运动控制 使用手册

专注你需要的工控解决方案

Focus on the industrial control solutions you need

JUNCAUTO

所有权信息

- 未经版权所有者同意,不得将本文档的全部或者部分以纸面或电子文档的形式重新发布。
- 本文档只用于辅助读者使用产品,军创(厦门)自动化科技有限公司不对使用该文档中的信息而引起的 损失或者错误负责。本文档描述的产品和文本正在不断地升级和完善中,军创(厦门)自动化科技有限 公司有权利在未通知用户的情况下修改本文档。

目录

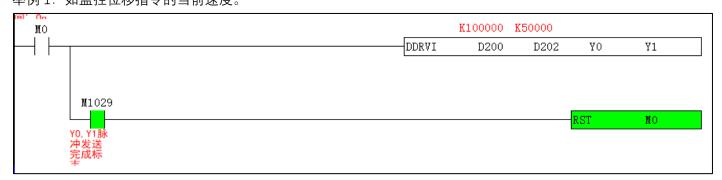
所有权	信息	1
目录		
版本修	·订一览表	4
指令一	览	4
轴号定	×	5
虚拟示	波器使用	6
多轴联	动插补【TRACK】	7
1)	指令概述	7
2)	操作数	7
3)	功能和动作	7
4)	平面坐标模型	8
	a) 相关参数	8
	b) 当前轨迹功能码 S2+0 说明	9
	c) 案例演示	12
5)	双关节机械手模型	17
	a) S1 相关参数	17
	b) S2、S3 相关参数	18
6)	蜘蛛手三维模型	29
	a) S1 相关参数	29
	b) S2、S3 相关参数	30
跟随式	持续运动【HAND】	45
1)	指令概述	45
2)	操作数	45
3)	功能和动作	45
4)	相关参数	45
5)	举例	46
跟随式	持续运动【FOLLOW】	49
1)	指令概述	49
2)	操作数	49
3)	功能和动作	49
4)	相关参数	49
5)	举例	
追剪【	CAMCUT]	
1)		
2)		
3)		
4)		
5)		
6)	举例 	
	追剪【CAM】	
1)		
2)		
3)		
4)	相关参数	
5)	举例 	
	'凸轮运动【CAM】	
1)	指令概述	69

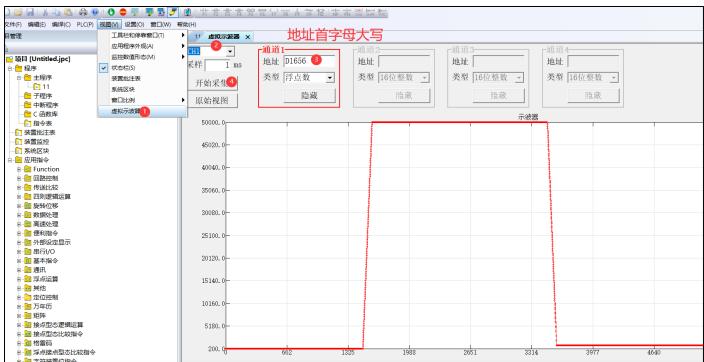
2)	操作数	69
3)	功能和动作	69
4)	相关参数	69
5)	举例	70
追切式	凸轮运动【CAM】	75
1)	指令概述	75
2)	操作数	75
3)	功能和动作	75
4)	相关参数	76
5)	举例	76
周期式	司步运动【CAMSYNC】	82
1)	指令概述	82
2)	操作数	83
3)	功能和动作	83
4)	相关参数	83
5)	举例	84
自定义	凸轮曲线【CAM】	88
1)	指令概述	88
2)	操作数	88
3)	功能和动作	88
4)	相关参数	88
5)	举例	89
叠加运	动【CAMADD】	93
1)	指令概述	93
2)	操作数	93
3)	功能和动作	93
4)	相关参数	94
5)	举例	94

版本修订一览表

版本	变更内容	发行日期
第一版 V1.4	第一版发行	20211225
第二版 V1.5	1、新增 TRACK 指令椭圆插补 2、 <u>新增自定义凸轮指令</u> 3、更正周期式凸轮运动指令 CAM 从轴同步比例 公式	20220620
第二版 V1.6	1、新增 TRACK 指令相关说明 2、新增 CAMCUT 指令相关说明 3、新增追切式追剪 CAM 相关说明	20230825
第三版 V1.7	1、新增 TRACK 蜘蛛手案例说明 2、新增 TRACK 双关节机械手案例说明 3、新增 HAND 指令使用说明 4、新增 FOLLOW 指令机种说明 5、新增追切式追剪功能 6、优化追切式追剪、追切式凸轮运动范例程序 7、修改指令一览表	20240418

指令一览


指令助忆符	功能码	功能	支持机种
		平面坐标模型 X 和 Y2 轴	常规机种: JHC、JSC
		平面坐标模型 2 轴及以上	
TRACK	详见资料	双关节机械手模型	带 M 型号机种
		蜘蛛手三维模型	
		跟随式持续运动	程序容量为 30K 及以上机种。
HAND	无	正反限位功能	常规机种: JHC、JSC
		11.人以以12.7月比	带 M 型号机种:除 JM、JHM、JTM 不支持,其他均支持
FOLLOW	无	跟随式持续运动	程序容量为 30K 及以上机种。
CAMCUT	无	追剪	带 M 型号机种
CAM	K14	追切式追剪运动	带 M 型号机种
CAM	K7	周期式凸轮运动	带 M 型号机种
CAM	K2	追切式凸轮运动	带 M 型号机种
CAMSYNC	无	周期式同步运动	带 M 型号机种
CAM	K9	自定义凸轮曲线	带 M 型号机种
CAMADD	无	运动叠加	带 M 型号机种


轴号定义

通道	装置	轴号设置
CH0	(Y0 Y1)	KO
CH1	(Y2 Y3)	K1
CH2	(Y4 Y5)	K2
CH3	(Y6 Y7)	K3
CH4	(Y10 Y11)	K4
CH5	(Y12 Y13)	K5
C251(编码器)	(X0 X1)	K-1

虚拟示波器使用

仅带 M 型的运动控制器支持,如用串口调试程序,建议用 115200bps 波特率监控。举例 1:如监控位移指令的当前速度。

说明:

- 1) 最多可选 4 个通道 CH0~CH3, 每个通道可隐藏或者显示。
- 2) 采样周期最小默认为 1ms。
- 3) 监控地址仅为 D 寄存器, 可用于分析数据原因。

多轴联动插补【TRACK】

1) 指令概述

多轴联动插补,可以理解为多段插补之间无需减速停,当前轨迹执行完,可立即执行下一段轨迹。

该指令执行的原理是虚轴为主轴,实轴为从轴,跟随主轴执行联动插补运动。

多轴联动	多轴联动插补【TRACK】					
执行条件 常 ON		适用机型	适用功能			
		带 M 的机种: JM、JEM、JHM、 JH2M、JTM、JSM、JHCM、JTCM、 JT5M	全部			
		常规机种: JHC、JSC	仅支持 2 轴: X 和 Y 轴平面坐标模式,其他功能不支持			
软件要求		2.6.050 及以上				

2) 操作数

操作数	作用	
\$1	指定输入参数起始地址	
S2	指定输入轨迹寄存器起始地址	
S3	指定输出状态位起始地址	

3) 功能和动作

- S1 指定【输入参数起始地址】。占用寄存器 S1~S1+29
- S2 指定【输入轨迹寄存器起始地址】。占用寄存器 S2~S2+自定义
- S3 指定【输出状态位起始地址】。占用继电器 S3~S3+9
- ●注意: 轴组以绝对位移形式进行坐标点的移动, 接通指令前需把当前脉冲数清零(特殊 D 寄存器), 定原点。
- ●当 M0 由 OFF 至 ON ,对 S1+10-S1+14 指定轴组进行插补运动控制,其模式由 S2+0 控制。轨迹位置由 S2+8-S2+17 共同决定,线速度为 S2+6,两轨迹之间的加速度由 S1+4 控制。加减速时间由 S1+0 指定轴号对应的特殊 D 寄存器控制,详见电机参数特殊表。所有轨迹完成时 M100 置位。

4) 平面坐标模型

a) 相关参数

输入参数	参数名	数据类型	单位	备注
\$1+0	虚轴轴号	16位	/	假象的轴对象,如主机输出有 16 点(Y0~Y17),则虚轴写 K8(Y20) 注:首地址必须使用偶数,不得用奇数地址
S1+1	插补模式	16位	/	总线轴驱动:写0 脉冲轴驱动:写1
\$1+2	总轨迹数	16位	/	需要走的轨迹点数之合
\$1+3	每条轨迹占用的 D 寄存器地 址个数	16 位	/	确定每条轨迹寄存器的首地址(S2+0)。 为了编程方便,每条轨迹占用的地址个数建议统一,并取 10 的整数 倍。 比如每一条轨迹占用的 D 寄存器是 16 个,可以将 S1+3 设置成 K20,设置为占用 20 个。则每条轨迹的起始地址分别为(S2+0)、 (S2+20)、(S2+40) ······
S1+4	拐弯加速度	32 位	频率/秒	两条轨迹之间的加速度,决定了轨迹运行的加减速时间。 拐弯加速度=虚轴频率(线速度)/加速时间,比如虚轴运行频率是 100Khz,如果希望加减速时间是100ms,则 100K/0.1S=1000Khz,所以拐弯加速度赋值为1000000。
S1+6	当前正在做第几条轨迹	16 位 (只读)	/	/
S1+7	当前辅助码	16 位 (只读)	/	当前轨迹 S2+1 的映射值
\$1+8	插补轴数	16位	/	需要进行插补的轴数
S1+9	总轴数	16位	/	与 \$1+8 参数一致
S1+10	第1个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推,可参考轴号定义
S1+11	第2个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推,可参考轴号定义
\$1+12	第3个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推,可参考轴号定义
\$1+13	第4个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推,可参考轴号定义
S1+14	第5个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推,可参考轴号定义
\$1+15~29	系统预留	16位	/	/
输入参数	参数名	数据类型	单位	备注
\$2+0	当前轨迹功能码 (轨迹寄存器首地址)	16 位	/	0: 直线点 1: 圆弧点 2: 90 度顺时针圆弧点/椭圆点 3: 90 度逆时针圆弧点/椭圆点 4: 360 度顺时针圆弧点/椭圆点 5: 360 度逆时针圆弧点/椭圆点 功能码定义方式详见下一节说明 注: 首地址必须使用偶数,不得用奇数地址
\$2+1 \$2+2~\$2+3	当前轨迹辅助码	16位	/	● 0~9999: 轨迹执行完成后 S1+7 会被赋值,轨迹运行不暂停。 此功能一般用于运行到某个轨迹时,可以不暂停并执行其他辅助输出。 ● 10000~19999: 轨迹执行完成后 S1+7 会被赋值,轨迹运行暂停,直到 S1+7 被清 0 才继续。 比如希望执行到当前轨迹时暂停, S2+1 可赋值 K10000,当轨迹运行到 S1+7 为 K10000 时,则轨迹暂停, S1+7 赋值为 0,启动继续执行轨迹。 说明:赋值 10000~19999 可用来实现轨迹运行过程中暂停。注意仅在当前轨迹功能码 S2+0 为 0 时支持暂停,即轨迹为直线点时可暂停,其他功能码不支持暂停。

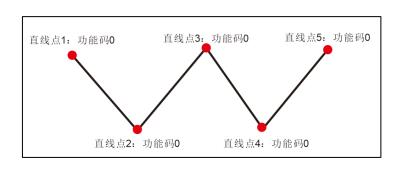
		(只读)		
\$2+4~\$2+5	系统自动计算出的节点速度	32 位		一般不使用,按系统自动计算默认值,仅只读。 比如拐弯加速度设置大,拐角处顿挫感强,可以将节点速度改小; 拐弯加速度比较小,圆弧过度时有减速,这时候加大节点速度,提 高轨迹流畅度
S2+6~S2+7	虚轴频率(线速度)	32 位	/	决定本条轨迹行走的虚轴速度,TRACK 启动前赋值一次
S2+8~S2+9	第1轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+10~S2+11	第2轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+12~S2+13	第3轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+14~S2+15	第 4 轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+16~S2+17	第 5 轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
输入参数	参数名	数据类型	单位	备注
\$3+0	轨迹已全部运行完成	BOOT	/	所有轨迹运行完成后置位
\$3+1	决定了虚轴的控制方式	воот	/	OFF: 虚轴由 TRACK 指令控制 ON: 虚轴由 PLC 写定位程序控制 此位仅在指令导通前设置有效
\$3+2	轨迹暂停	воот	/	当 S3+1 为 OFF 时,此位 ON 可暂停轨迹运行,为 OFF 则继续运行。
\$3+3~\$3+9	系统预留	BOOT	/	/

b) 当前轨迹功能码 S2+0 说明

● 功能码0用法

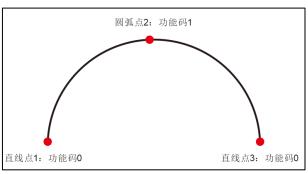
1) 定义: 0表示直线插补, 1表示圆弧插补

定义一条直线:如下图,当轨迹为1条直线时,需要2个点构成一条直线,则2个点A和B对应的功能码都是0,


即:

直线点 1: 功能码 0 直线点 2: 功能码 0

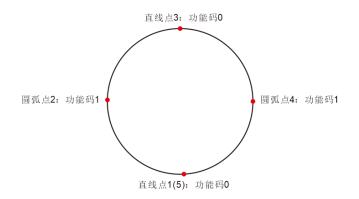
2) 定义多段直线:


直线点 1: 功能码 0 直线点 2: 功能码 0 直线点 3: 功能码 0 直线点 4: 功能码 0 直线点 5: 功能码 0

● 功能码1用法

1) 定义圆弧:如下图,当轨迹为1条圆弧时,需要3点构成一条圆弧,则1、2、3点对应的功能码分别是:

直线点 1: 功能码 0 圆弧点 2: 功能码 1 直线点 2: 功能码 0



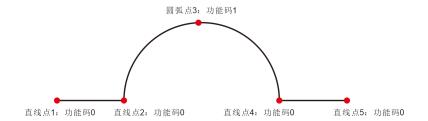
需3个点构成一个圆弧

2) 定义圆:如下图,当轨迹为1个圆时,需要5个点构成一个圆,则1-5点对应的功能码分别是:

直线点 1: 功能码 0 圆弧点 2: 功能码 1 直线点 3: 功能码 0

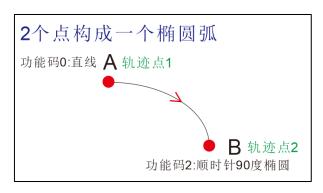
圆弧点 4: 功能码 1 直线点 5: 功能码 0

3) 混合线段,如图

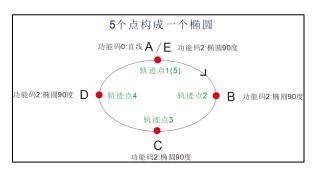

直线点 1: 功能码 0

直线点 2: 功能码 0

圆弧点 3: 功能码 1

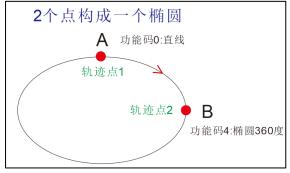

直线点 4: 功能码 0

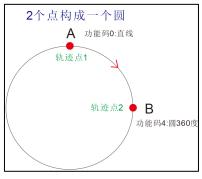
直线点 5: 功能码 0


● 功能码2用法

1) 定义顺时针椭圆弧:如下图,任意 2 点构成一个椭圆弧,则 2 个点 A、B 的功能码分别是直线点(功能码 0) →椭圆 90 度(功能码 2)。

注: 1、功能码 2 也可以执行圆弧,由 2 个点给定的坐标数据决定。功能码 3 与功能码 2 用法同理。

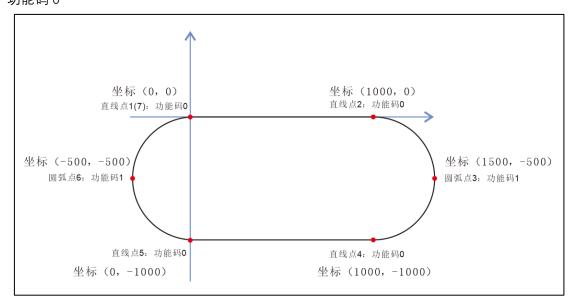

2) 定义椭圆:如下图,当轨迹为1个椭圆时,需要5个点构成一个椭圆,则5个点A、B、C、D、E对应的功能码分别是直线(功能码0)→椭圆90度(功能码2)→椭圆90度(功能码2)→椭圆90度(功能码2)。



● 功能码4用法

定义圆:如下图,当轨迹为1个圆时,需要2个点构成一个圆,则2个点A、B对应的功能码分别是直线(功能码0)→圆弧360度(功能码4)。

注:功能码 4 执行椭圆或整圆,由 2 个点给定的坐标数据决定。

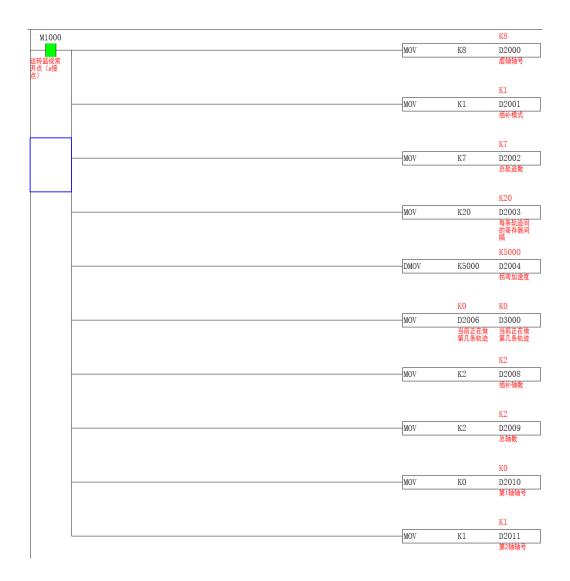


c) 案例演示

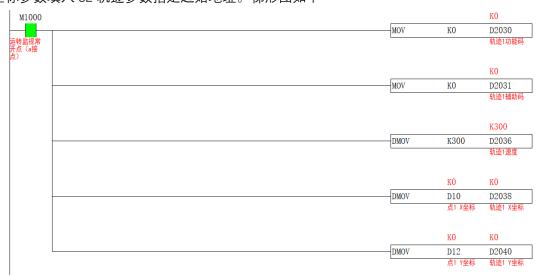
举例:使用脉冲伺服用 TRACK 指令画出下图的图形.已知:

点 1 的坐标为(0,0),点 2 的坐标为(1000,0),点 4 的坐标为(1000,-1000),点 5 的坐标为(0,-1000),点 7 的坐标与点 1 坐标一致重合。坐标的单位指的是脉冲数,实际坐标需以脉冲当量计算。因此如需形成一个闭合的轨迹,需形成 7 个点,分别为:

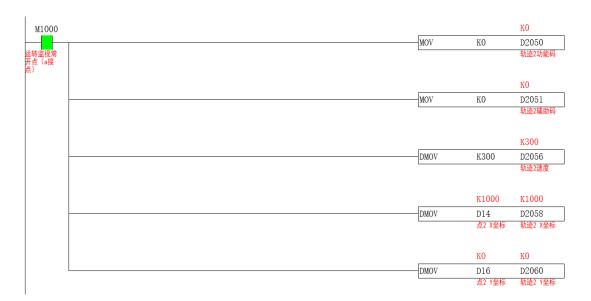
直线点 1: 功能码 0 直线点 2: 功能码 0 圆弧点 3: 功能码 1 直线点 4: 功能码 0 直线点 5: 功能码 0 圆弧点 6: 功能码 1 直线点 7: 功能码 0

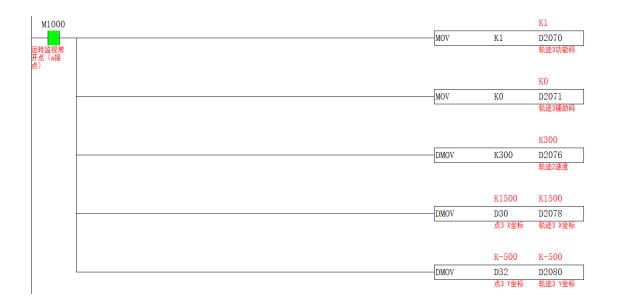


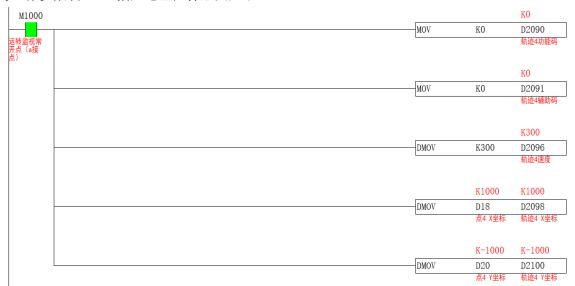
1. 先将输入参数 S1 的数据填入,共有 7 个轨迹点(封闭的图形起点与终点重合,所以需加一个轨迹点),梯形图如下。

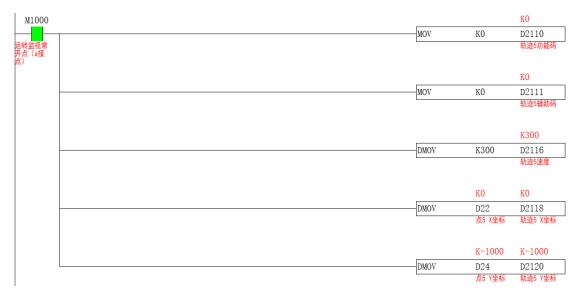

2.已知四个直线点坐标,算出圆心的坐标,就可得知点3的Y轴坐标为{(-1000-0)/2}=-500,X坐标等于1000+500=1500。其中500为圆的半径。点6与点3的计算方法一致,则点6坐标为(-500,-500)。梯形图如下。

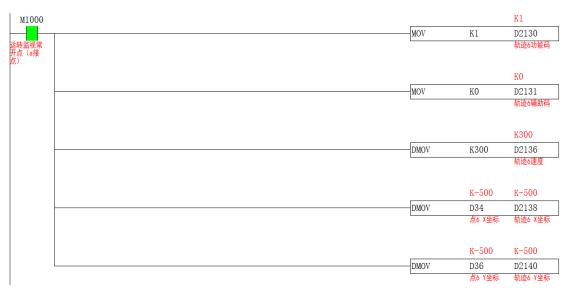
由于每条轨迹间隔地址 D2003 设置为 K20, 所以 7 个点的起始坐标分别为: D2038, D2058, D2078, D2098, D2118, D2138, D2158。

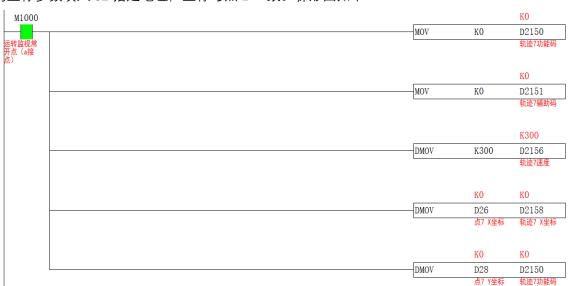

注意: S1 和 S2 操作数建议用触发式赋值,不建议一直赋值,因此以下参数赋值程序是写在子程序中,上电瞬间会执行一次。

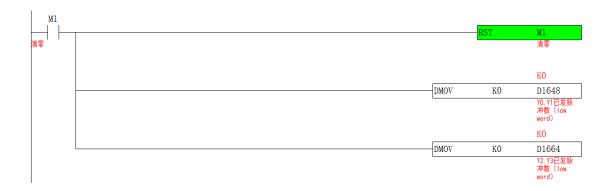

3.将点1的坐标参数填入 S2 轨迹参数指定起始地址。梯形图如下


4.将点 2 的坐标参数填入 S2 指定地址。由于 S1+3 的值为 20,所以点 2 的轨迹起始寄存器为 D2030+20=D2050,梯形图如下

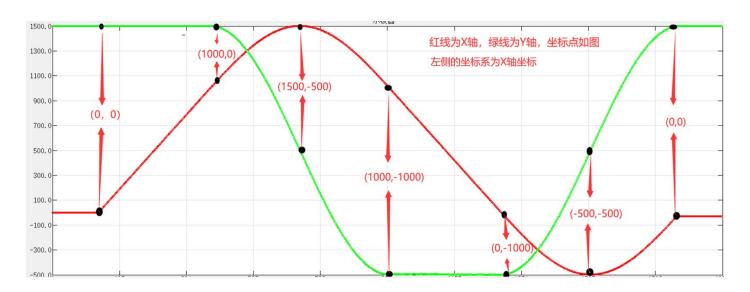

5.将点 3 的坐标参数填入 S2 指定地址,功能码填 K1,梯形图如下

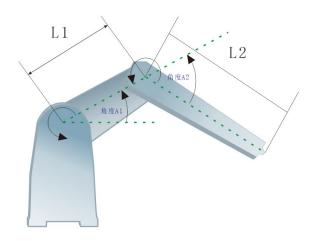

6. 将点 4 的坐标参数填入 S2 指定地址,梯形图如下


7. 将点 5 的坐标参数填入 S2 指定地址,梯形图如下


8. 将点 6 的坐标参数填入 S2 指定地址, 功能码为 K1。梯形图如下

9. 将点7的坐标参数填入S2指定地址,坐标与点1一致。梯形图如下


10.由于指令是已绝对形式位移,所以参数都填好后,需将 M1 置 ON, 把当前脉冲数清零。梯形图如下


11.当前脉冲清零后,将 M0 置 ON,指定的轴组将按预定的轨迹行走,轨迹完成后 M100 置 ON。梯形图如下

两轴运行的位置曲线如下

5) 双关节机械手模型

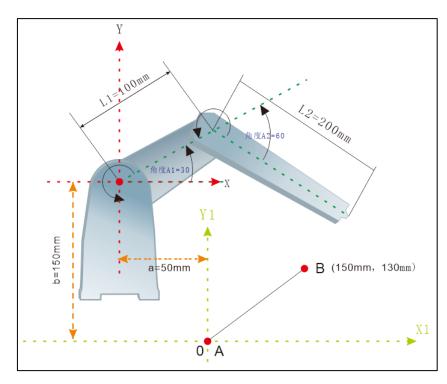
a) S1 相关参数

输入参数	参数名	数据类型	单位	备注
\$1+0	虚轴轴号	16位	/	假象的轴对象,如主机输出有 16 点 (Y0~Y17),则虚轴写 K8 (Y20) 注: 首地址必须使用偶数,不得用奇数地址
\$1+1	插补模式	16位	/	总线轴驱动:写 K4 脉冲轴驱动:写 K5
\$1+2	总轨迹数	16位	/	需要走的轨迹点数之合
\$1+3	每条轨迹占用的 D 寄存器地址个数	16位	/	确定每条轨迹寄存器的首地址(S2+0)。 为了编程方便,每条轨迹占用的地址个数建议统一,并取 10 的整数 倍。 比如每一条轨迹占用的 D 寄存器是 16 个,可以将 S1+3 设置成 K20,设置为占用 20 个。则每条轨迹的起始地址分别为(S2+0)、 (S2+20)、(S2+40) ······
S1+4	拐弯加速度	32 位	频率/秒	两条轨迹之间的加速度,决定了轨迹运行的加减速时间。 拐弯加速度=虚轴频率(线速度)/加速时间,比如虚轴运行频率是 100Khz,如果希望加减速时间是 100ms,则 100K/0.1S=1000Khz,所以拐弯加速度赋值为 1000000。
\$1+6	当前正在做第几条轨迹	16 位 (只读)	/	/
S1+7	当前辅助码	16 位 (只读)	/	当前轨迹 S2+1 的映射值
\$1+8	插补轴数	16位	/	需要进行插补的轴数,写 K2
\$1+9	总轴数	16位	/	与 S1+8 参数一致,写 K2
\$1+10	第1个插补轴轴号	16位	/	Y0 轴写 K0,Y2 轴写 K1,依次类推,可参考轴号定义
\$1+11	第2个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推, 可参考轴号定义
\$1+12~\$1+13	关节长度 L1	32位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm,那 10mm 就要填 K10000
\$1+14~\$1+15	关节长度 L2	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm,那 10mm 就要填 K10000
S1+16~S1+17	X轴原点偏移	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm,那 10mm 就要填 K10000
\$1+18~\$1+19	Y轴原点偏移	32位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm,那 10mm 就要填 K10000
S1+20~S1+21	Al 初始角度	32 位	度	/
\$1+22~\$1+23	A2 初始角度	32 位	度	/
\$1+24~\$1+25	工作模式	32 位	/	为 0 代表每个关节各安装一个电机

				为丨代表两个电机在同一个关节对称安装
\$1+26~\$1+27	关节 Al的l圈脉冲数	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.01 度,那 360 度就要填 K36000
\$1+28~\$1+29	关节 A2 的 1 圏脉冲数	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.01 度,那 360 度就要填 K36000
\$1+30~\$1+31	X 轴工件坐标	32位, 只读	/	用来显示工件坐标 X,比如关节长度的单位是 0.001mm,那这里的单位就也会是 0.001mm
\$1+32~\$1+33	Y轴工件坐标	32 位,只读	/	用来显示工件坐标 X,比如关节长度的单位是 0.001mm,那这里的单位就也会是 0.001mm

b) S2、S3 相关参数

自动运行模式


当 S3+3 为 OFF 时,为自动模式 (TRACK 指令导通,自动执行设定的轨迹),关联操作数如下:

输入参数	参数名	数据类型	单位	备注
\$2+0	当前轨迹功能码 (轨迹寄存器首地址)	16 位	/	0: 直线点 1: 圆弧点 2: 90 度顺时针圆弧点/椭圆点 3: 90 度逆时针圆弧点/椭圆点 4: 360 度顺时针圆弧点/椭圆点 5: 360 度逆时针圆弧点/椭圆点 功能码定义方式 <u>详见平面坐标模型说明</u> 注: 首地址必须使用偶数,不得用奇数地址
\$2+1	当前轨迹辅助码	16 位	/	● 0~9999: 轨迹执行完成后 S1+7 会被赋值,轨迹运行不暂 停。 此功能一般用于运行到某个轨迹时,可以不暂停并执行其他 辅助输出。 ● 10000~19999: 轨迹执行完成后 S1+7 会被赋值,轨迹运行暂 停,直到 S1+7 被清 0 才继续。 比如希望执行到当前轨迹时暂停, S2+1 可赋值 K10000,当 轨迹运行到 S1+7 为 K10000 时,则轨迹暂停,S1+7 赋值为 0,启动继续执行轨迹。 说明:赋值 10000~19999 可用来实现轨迹运行过程中暂停。注意仅在当前轨迹功能码 S2+0 为 0 时支持暂停,即轨迹为直线点时可暂 停,其他功能码不支持暂停。
\$2+2~\$2+3	系统自动计算出的线速度	32位 (只读)	/	1
\$2+4~\$2+5	系统自动计算出的节点速度	32 位		一般不使用,按系统自动计算默认值,仅只读。 比如拐弯加速度设置大,拐角处顿挫感强,可以将节点速度改小; 拐弯加速度比较小,圆弧过度时有减速,这时候加大节点速度,提 高轨迹流畅度
\$2+6~\$2+7	虚轴频率(线速度)	32 位	/	决定本条轨迹行走的虚轴速度,TRACK 启动前赋值一次
\$2+8~\$2+9	第1轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+10~S2+11	第 2 轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+12~S2+13	第3轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+14~S2+15	第 4 轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+16~S2+17	第 5 轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
输入参数	参数名	数据类型	单位	备注
\$3+0	轨迹已全部运行完成	воот	/	所有轨迹运行完成后置位
\$3+1	决定了虚轴的控制方式	воот	/	OFF: 虚轴由 TRACK 指令控制 ON: 虚轴由 PLC 写定位程序控制

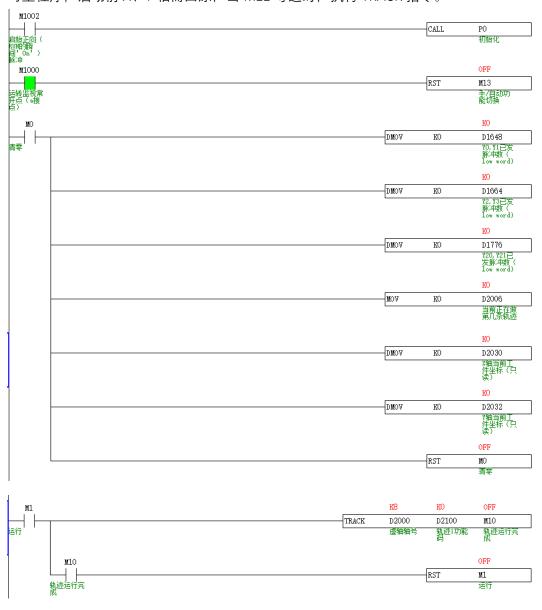
				此位仅在指令导通前设置有效
S3+2	轨迹暂停	BOOT	,	当 S3+1 为 OFF 时,此位 ON 可暂停轨迹运行,为 OFF 则继续运
3312	机处省厅	ВООТ	/	行。
CO. O T./5-	工/白马拱	DOOT	,	OFF: 工作在自动模式
\$3+3	手/自动模式切换 	BOOT	/	此位仅在指令导通前设置有效
S3+4~S3+9	预留	BOOT	/	系统用

案例演示

自动运行案例

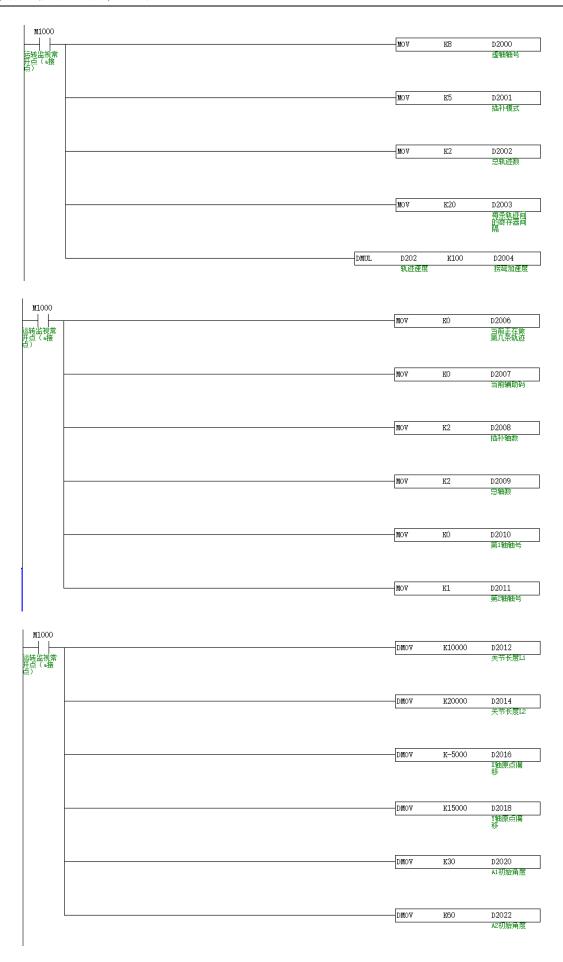
如图, 2 处的关节点为脉冲伺服, 机械手演示从 A 移动到 B, A 点的坐标为 (0,0), 假设精度为发 1 个脉冲为 0.01mm,则 1mm 对应的脉冲为 100。发 1 个脉冲为 0.01 度,则 1 度对应的脉冲为 100。由 a=50mm,b=150mm,可得出关节原点偏移坐标为 (-50mm,150mm),具体如下:

输入参数	参数名	数据类型	单位	值
S1+0	虚轴轴号	16位	/	K8
S1+1	插补模式	16位	/	K5
S1+2	总轨迹数	16 位	/	K2
\$1+3	每条轨迹占用的 D 寄存器地址个数	16位	/	K20
S1+4	拐弯加速度	32 位	频率/秒	(S2+6) *100
\$1+8	插补轴数	16 位	/	K2
S1+9	总轴数	16位	/	K2
\$1+10	第1个插补轴轴号	16 位	/	Y0 轴写 K0
S1+11	第2个插补轴轴号	16位	/	Y2 轴写 K1
S1+12~S1+13	关节长度 L1	32 位	/	K10000
\$1+14~\$1+15	关节长度 L2	32 位	/	K20000
S1+16~S1+17	X轴原点偏移	32 位	/	K-5000
\$1+18~\$1+19	Y轴原点偏移	32 位	/	K15000
S1+20~S1+21	A1 初始角度	32 位	度	K30
\$1+22~\$1+23	A2 初始角度	32 位	度	K60


\$1+24~\$1+25	工作模式	32 位	/	KO
S1+26~S1+27	关节 A1 的 1 圈脉冲数	32 位	/	K36000
\$1+28~\$1+29	关节 A2 的 1 圈脉冲数	32 位	/	K36000

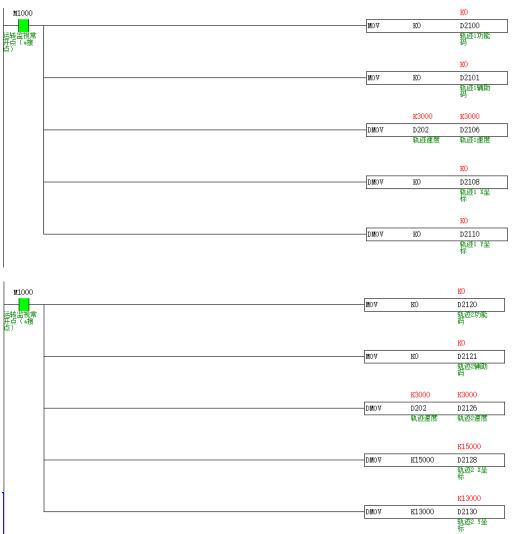
自动运行模式, S2 坐标点赋值

轨迹点	输入参数	参数名	数据类型	单位	值
	S2+0	当前轨迹功能码	16位	/	КО
轨迹 A 点	S2+6~S2+7	虚轴频率(线速度)	32 位	/	K3000
1/622 - ////	S2+8~S2+9	A 点 X 轴绝对坐标	32 位	脉冲	K0
	S2+10~S2+11	A 点 Y 轴绝对坐标	32 位	脉冲	K0
	\$2+20	当前轨迹功能码	16位	/	K0
↓ 轨迹 B 点	S2+26~S2+27	虚轴频率(线速度)	32 位	/	K3000
机处口点	S2+28~S2+29	A 点 X 轴绝对坐标	32 位	脉冲	K15000
	S2+30~S2+31	A 点 Y 轴绝对坐标	32 位	脉冲	K13000


编程如下:

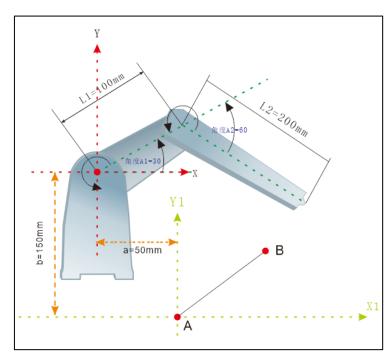
● 写主程序,启动前 X、Y 轴需回原,当 M11 导通时,执行 TRACK 指令。

● 填写 S1 中 D2000 开始的参数,编程如下:


注意: S1 和 S2 操作数建议用触发式赋值,不建议一直赋值,因此以下程序是写在子程序中,上电瞬间会执行一次。

● 填写 S2 中 D2100 开始的参数:

注意: S1 和 S2 操作数建议用触发式赋值,不建议一直赋值


手动示教模式

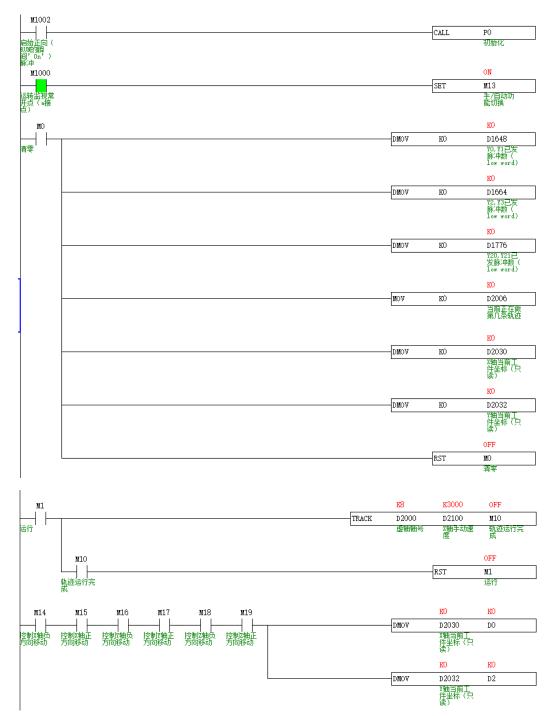
当 S3+3 为 ON 时,为手动模式(TRACK 指令导通,可手动执行 X、Y、Z 到指定点,类似于手动示教),S2 关联操作数:

输入参数	参数名	数据类型	单位	备注
S2+0~S2+1	V加手动体的	32 位	Hz	手动模式下,设定 X 轴的速度
32+0~32+1	X 轴手动速度	32 <u>W</u>	П	注: 首地址必须使用偶数,不得用奇数地址
\$2+2~\$2+3	Y轴手动速度	32 位	Hz	手动模式下,设定Y轴的速度
S2+4~S2+5	Z 轴手动速度	32 位	Hz	手动模式下,设定 Z 轴的速度
S2+6~S2+7	预留	32 位	/	系统用
S2+8~S2+9	预留	32 位	/	系统用
S2+10~S2+11	X轴手动加速度	32 位	Hz/s ²	手动模式下,设定X轴的加速度
S2+12~S2+13	Y轴手动加速度	32 位	Hz/s ²	手动模式下,设定Y轴的加速度
S2+14~S2+15	Z 轴手动加速度	32 位	Hz/s ²	手动模式下,设定 Z 轴的加速度
S2+16~S2+17	预留	32 位	/	系统用
S2+18~S2+19	预留	32 位	/	系统用
\$2+20~\$2+21	X轴手动初速度	32 位	Hz	手动模式下,设定X轴的起始速度
\$2+22~\$2+23	Y轴手动初速度	32 位	Hz	手动模式下,设定Y轴的起始速度
\$2+24~\$2+25	Z轴手动初速度	32 位	Hz	手动模式下,设定 Z 轴的起始速度
S2+26~S2+27	预留	32 位	/	系统用
\$2+28~\$2+29	预留	32 位	/	系统用
输入参数	参数名	数据类型	单位	备注
S3+0	轨迹已全部运行完成	воот	/	所有轨迹运行完成后置位
				OFF: 虚轴由 TRACK 指令控制
S3+1	决定了虚轴的控制方式	BOOT	/	ON: 虚轴由 PLC 写定位程序控制
				此位仅在指令导通前设置有效
\$3+2	轨迹暂停	воот	/	当 S3+1 为 OFF 时,此位 ON 可暂停轨迹运行,为 OFF 则继续运行。
60.0		DOOT	,	ON: 手动模式
\$3+3	手/自动模式切换 	BOOT	/	此位仅在指令导通前设置有效
S3+4	手动模式下,控制 X 轴移动	BOOT	/	为 ON, X 轴负方向移动, S3+3 为 ON 时有效
\$3+5	手动模式下,控制 X 轴移动	BOOT	/	为 ON, X 轴正方向移动, S3+3 为 ON 时有效
S3+6	手动模式下,控制 Y 轴移动	BOOT	/	为 ON, Y 轴负方向移动, S3+3 为 ON 时有效
S3+7	手动模式下,控制 Y 轴移动	BOOT	/	为 ON, Y 轴正方向移动, S3+3 为 ON 时有效
\$3+8	手动模式下,控制 Z 轴移动	BOOT	/	为 ON, Z 轴负方向移动, S3+3 为 ON 时有效
\$3+9	手动模式下,控制 Z 轴移动	BOOT	/	为 ON, Z 轴正方向移动,S3+3 为 ON 时有效

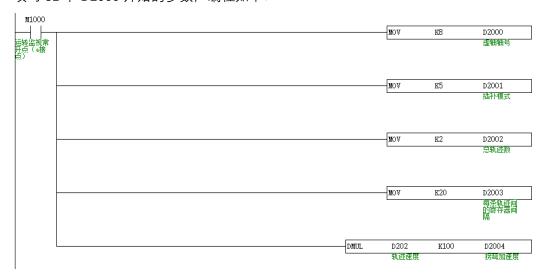
案例演示

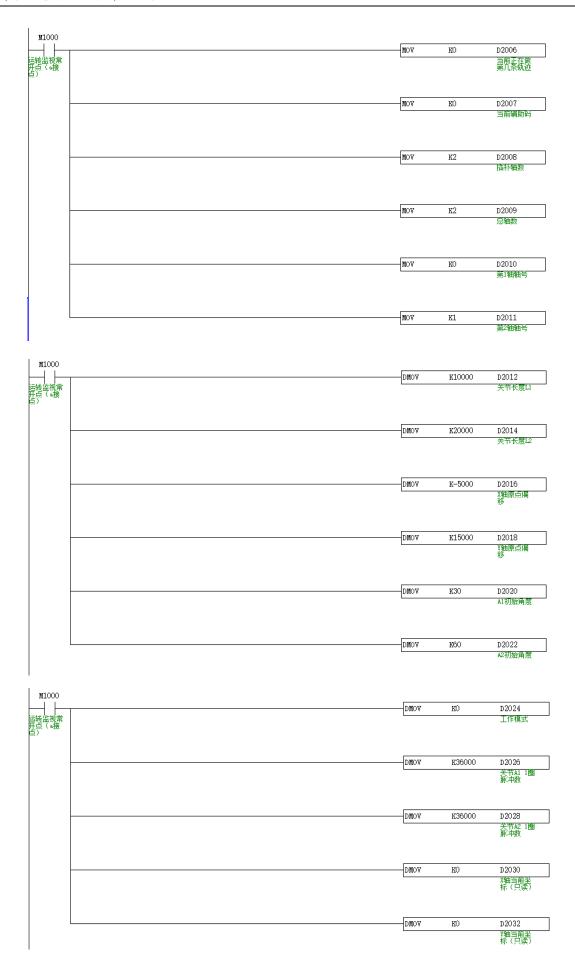
手动示教案例

如图, 2 处的关节点为脉冲伺服, 在 A、B 坐标无法确认的情况下, 可通过手动示教功能演示从 A 移动到 B。假设精度为发 1 个脉冲为 0.01 mm, 则 1 mm 对应的脉冲为 100。发 1 个脉冲为 0.01 度, 则 1 度对应的脉冲为 100。由 a=50 mm, b=150 mm, 可得出关节原点偏移坐标为(-50 mm, 150 mm),具体如下:


输入参数	参数名	数据类型	单位	值
\$1+0	虚轴轴号	16 位	/	K8
S1+1	插补模式	16 位	/	K5
S1+2	总轨迹数	16 位	/	K2
\$1+3	每条轨迹占用的 D 寄存器地址个数	16 位	/	K20
S1+4	拐弯加速度	32 位	频率/秒	(\$2+6) *100
\$1+8	插补轴数	16 位	/	K2
S1+9	总轴数	16 位	/	K2
\$1+10	第1个插补轴轴号	16 位	/	Y0 轴写 K0
S1+11	第2个插补轴轴号	16 位	/	Y2 轴写 K1
\$1+12~\$1+13	关节长度 L1	32 位	/	K10000
\$1+14~\$1+15	关节长度 L2	32 位	/	K20000
\$1+16~\$1+17	X轴原点偏移	32 位	/	K-5000
\$1+18~\$1+19	Y轴原点偏移	32 位	/	K15000
S1+20~S1+21	Al 初始角度	32 位	度	K30
\$1+22~\$1+23	A2 初始角度	32 位	度	K60
\$1+24~\$1+25	工作模式	32 位	/	KO
\$1+26~\$1+27	关节 A1 的 1 圈脉冲数	32 位	/	K36000
\$1+28~\$1+29	关节 A2 的 1 圈脉冲数	32 位	/	K36000

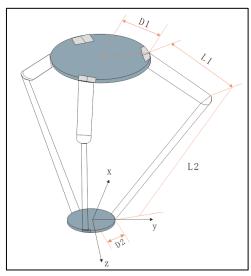
手动示教模式, S2 坐标点赋值


输入参数	参数名	数据类型	单位	备注
S2+0~S2+1	X轴手动速度	32 位	Hz	手动模式下,设定 X 轴的速度
S2+2~S2+3	Y轴手动速度	32 位	Hz	手动模式下,设定Y轴的速度
S2+4~S2+5	Z轴手动速度	32 位	Hz	手动模式下,设定 Z 轴的速度
S2+6~S2+7	预留	32 位	/	系统用
S2+8~S2+9	预留	32 位	/	系统用
S2+10~S2+11	X轴手动加速度	32 位	Hz/s ²	手动模式下,设定 X 轴的加速度
S2+12~S2+13	Y轴手动加速度	32 位	Hz/s ²	手动模式下,设定Y轴的加速度
S2+14~S2+15	Z 轴手动加速度	32 位	Hz/s ²	手动模式下,设定 Z 轴的加速度
S2+16~S2+17	预留	32 位	/	系统用
S2+18~S2+19	预留	32 位	/	系统用
\$2+20~\$2+21	X轴手动初速度	32 位	Hz	手动模式下,设定X轴的起始速度
S2+22~S2+23	Y轴手动初速度	32 位	Hz	手动模式下,设定Y轴的起始速度
S2+24~S2+25	Z轴手动初速度	32 位	Hz	手动模式下,设定 Z 轴的起始速度
S2+26~S2+27	预留	32 位	/	系统用
\$2+28~\$2+29	预留	32 位	/	系统用
输入参数	参数名	数据类型	单位	备注
\$3+0	轨迹已全部运行完成	BOOT	/	所有轨迹运行完成后置位
\$3+1	决定了虚轴的控制方式	воот	/	OFF: 虚轴由 TRACK 指令控制 ON: 虚轴由 PLC 写定位程序控制 此位仅在指令导通前设置有效
\$3+2	轨迹暂停	воот	/	当 S3+1 为 OFF 时,此位 ON 可暂停轨迹运行,为 OFF 则继续运行。
\$3+3	手/自动模式切换	воот	/	ON: 手动模式 此位仅在指令导通前设置有效
\$3+4	手动模式下,控制 X 轴移动	BOOT	/	为 ON, X 轴负方向移动, S3+3 为 ON 时有效
\$3+5	手动模式下,控制 X 轴移动	BOOT	/	为 ON, X 轴正方向移动, S3+3 为 ON 时有效
\$3+6	手动模式下,控制 Y 轴移动	BOOT	/	为 ON, Y 轴负方向移动, S3+3 为 ON 时有效
\$3+7	手动模式下,控制 Y 轴移动	BOOT	/	为 ON, Y 轴正方向移动, S3+3 为 ON 时有效
\$3+8	手动模式下,控制 Z 轴移动	BOOT	/	为 ON, Z 轴负方向移动,S3+3 为 ON 时有效
\$3+9	手动模式下,控制 Z 轴移动	BOOT	/	为 ON, Z 轴正方向移动,S3+3 为 ON 时有效


编程如下:

● 写主程序,启动前 X、Y 轴需回原,当 M11 导通时,执行 TRACK 指令手动控制 M14~M19 的 ON 和 OFF,开始手动示教。

● 填写 S1 中 D2000 开始的参数,编程如下:



● 填写 S2 中 D2100 开始的参数:

6) 蜘蛛手三维模型

功能说明:由伸缩机械臂和手指夹持器组成,机械臂类似于人的上臂与下臂相连,手指夹持器类似于人的手指,可以夹持物品并放置到需要的位置上。具有轨迹空间位置、方向和关节夹角等运算功能。

a) S1 相关参数

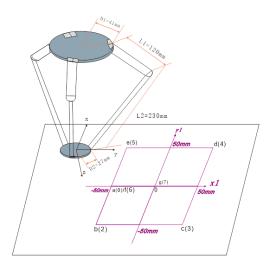
输入参数	参数名	数据类型	单位	备注
\$1+0	虚轴轴号	16 位	/	假象的轴对象,如主机输出有 16 点 (Y0~Y17) ,则虚轴写 K8 (Y20) 注: 首地址必须使用偶数,不得用奇数地址
\$1+1	插补模式	16位	/	总线轴驱动: 写 K10 脉冲轴驱动: 写 K11
S1+2	总轨迹数	16位	/	需要走的轨迹点数之合
\$1+3	每条轨迹占用的 D 寄存器地址个数	16 位	/	确定每条轨迹寄存器的首地址(S2+0)。 为了编程方便,每条轨迹占用的地址个数建议统一,并取 10 的整数倍。 比如每一条轨迹占用的 D 寄存器是 16 个,可以将 S1+3 设置成 K20,设置为占用 20 个。则每条轨迹的起始地址分别为 (S2+0)、(S2+20)、(S2+40)
S1+4	拐弯加速度	32 位	频率/秒	两条轨迹之间的加速度,决定了轨迹运行的加减速时间。 拐弯加速度=虚轴频率(线速度)/ 加速时间, 比如虚轴运行频率是 100Khz,如果希望加减速时间是 100ms,则 100K/0.1S=1000Khz,所以拐弯加速度赋值为 1000000。
\$1+6	当前正在做第几条轨迹	16位 (只读)	/	/
S1+7	当前辅助码	16位(只读)	/	当前轨迹 S2+1 的映射值
\$1+8	插补轴数	16位	/	需要进行插补的轴数,写 K3
S1+9	总轴数	16位	/	与 S1+8 参数一致,写 K3
\$1+10	第1个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推, 可参考轴号定义
\$1+11	第2个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推,可参考轴号定义
\$1+12	第3个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推, 可参考轴号定义
\$1+13	第4个插补轴轴号	16位	/	YO 轴写 KO, Y2 轴写 K1, 依次类推,可参考轴号定义
\$1+14~\$1+15	上平台半径 D1	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm, 那10mm 就要填K10000
\$1+16~\$1+17	下平台半径 D1	32位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm,那10mm就要填K10000
\$1+18~\$1+19	上杆长度 L1	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm,那10mm就要填K10000
\$1+20~\$1+21	下杆长度 L2	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm,那10mm就要填K10000

\$1+22~\$1+23	第丨轴旋转丨圈脉冲数	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.01 度,那 360 度就要填 K36000
\$1+24~\$1+25	第2轴旋转1圏脉冲数	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.01 度,那 360 度就要填 K36000
S1+26~S1+27	第3轴旋转1圈脉冲数	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.01 度,那 360 度就要填 K36000
\$1+28~\$1+29	第 4 轴旋转 1 圏脉冲数	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.01 度, 那 360 度就要填 K36000 (通常是末端旋转轴,有就填,没有可不填)
\$1+30~\$1+31	末端与下面中心点的 X 偏移	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走0.001mm,那10mm就要填K10000
\$1+32~\$1+33	末端与下面中心点的丫偏移	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm, 那10mm 就要填K10000
\$1+34~\$1+35	末端与下面中心点的 Z 偏移	32 位	/	按实际填,没有单位的概念,比如精度希望 1 个脉冲走 0.001mm,那10mm就要填K10000
\$1+36~\$1+37	第1轴初始角度	32 位: 浮点数	角度	总角度为 360 度
\$1+38~\$1+39	第2轴初始角度	32 位: 浮点数	角度	总角度为 360 度
\$1+40~\$1+41	第3轴初始角度	32 位: 浮点数	角度	总角度为 360 度
S1+42~S1+43	预留	/	/	/
\$1+44~\$1+45	X 轴当前坐标(只读)	32 位	/	用来显示工件坐标 X,比如关节长度的单位是 0.001mm,那这里的单位就也会是 0.001mm
S1+46~S1+47	Y轴当前坐标(只读)	32 位	/	用来显示工件坐标 Y,比如关节长度的单位是 0.001mm,那这里的单位就也会是 0.001mm
\$1+48~\$1+49	Z 轴当前坐标(只读)	32 位	/	用来显示工件坐标 Z,比如关节长度的单位是 0.001mm,那这里的单位就也会是 0.001mm
\$1+44~\$1+45 \$1+46~\$1+47	X 轴当前坐标(只读) Y 轴当前坐标(只读)	32 位	/ /	的单位就也会是 0.001mm 用来显示工件坐标 Y,比如关节长度的单位是 0.001mm,那时的单位就也会是 0.001mm 用来显示工件坐标 Z,比如关节长度的单位是 0.001mm,那是

特别注意: 3 个关节电机正反转的方向是否正确,当电机已发脉冲数增加时,L1 上杆应该是朝下移动方向才是对的

b) S2、S3 相关参数

自动运行模式


当 S3+3 为 OFF 时,为自动模式 (TRACK 指令导通,自动执行设定的轨迹),关联操作数如下:

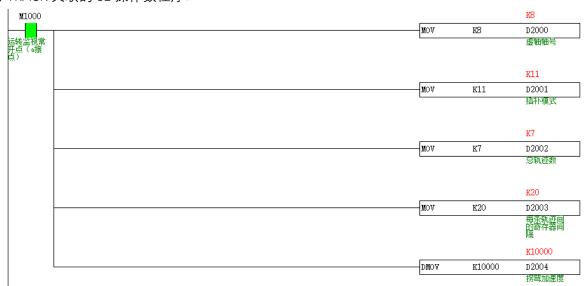
输入参数	参数名	数据类型	单位	备注
\$2+0	当前轨迹功能码 (轨迹寄存器首地址)	16 位	/	0: 直线点 1: 圆弧点 2: 90 度顺时针圆弧点/椭圆点 3: 90 度逆时针圆弧点/椭圆点 4: 360 度顺时针圆弧点/椭圆点 5: 360 度逆时针圆弧点/椭圆点 功能码定义方式详见平面坐标模型说明 注: 首地址必须使用偶数,不得用奇数地址
\$2+1	当前轨迹辅助码	16 位	/	● 0~9999: 轨迹执行完成后 S1+7 会被赋值,轨迹运行不暂停。 此功能一般用于运行到某个轨迹时,可以不暂停并执行其他辅助输出。 ■ 10000~19999: 轨迹执行完成后 S1+7 会被赋值,轨迹运行暂停,直到 S1+7 被清 0 才继续。 比如希望执行到当前轨迹时暂停, S2+1 可赋值 K10000,当轨迹运行到 S1+7 为 K10000 时,则轨迹暂停, S1+7 赋值为 0,启动继续执行轨迹。

				说明: 赋值 10000~19999 可用来实现轨迹运行过程中暂停。注意仅在当前轨迹功能码 S2+0 为 0 时支持暂停,即轨迹为直线点时可暂停,其他功能码不支持暂停。
\$2+2~\$2+3	系统自动计算出的线速度	32 位 (只读)	/	/
\$2+4~\$2+5	系统自动计算出的节点速度	32 位		一般不使用,按系统自动计算默认值,仅只读。 比如拐弯加速度设置大,拐角处顿挫感强,可以将节点速度改小; 拐弯加速度比较小,圆弧过度时有减速,这时候加大节点速度,提 高轨迹流畅度
S2+6~S2+7	虚轴频率(线速度)	32 位	/	决定本条轨迹行走的虚轴速度,TRACK 启动前赋值一次
S2+8~S2+9	第1轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+10~S2+11	第2轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+12~S2+13	第3轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+14~S2+15	第 4 轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
S2+16~S2+17	第 5 轴绝对坐标	32 位	脉冲	TRACK 启动前赋值一次
输入参数	参数名	数据类型	单位	备注
\$3+0	轨迹已全部运行完成	воот	/	所有轨迹运行完成后置位
\$3+1	决定了虚轴的控制方式	воот	/	OFF: 虚轴由 TRACK 指令控制 ON: 虚轴由 PLC 写定位程序控制 此位仅在指令导通前设置有效
\$3+2	轨迹暂停	воот	/	当 S3+1 为 OFF 时,此位 ON 可暂停轨迹运行,为 OFF 则继续运行。
\$3+3	手/自动模式切换	воот	/	OFF: 工作在自动模式 此位仅在指令导通前设置有效
S3+4~S3+9	预留	BOOT	/	系统用

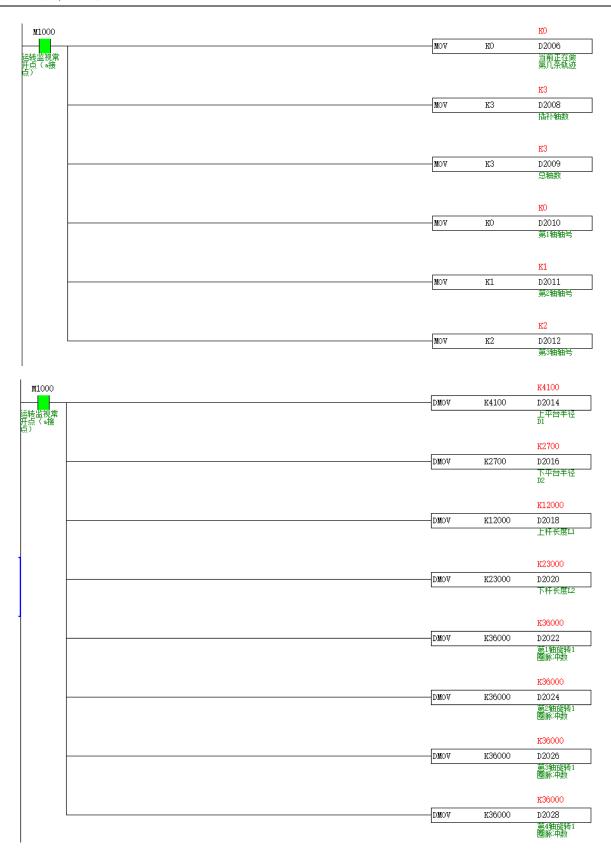
案例演示

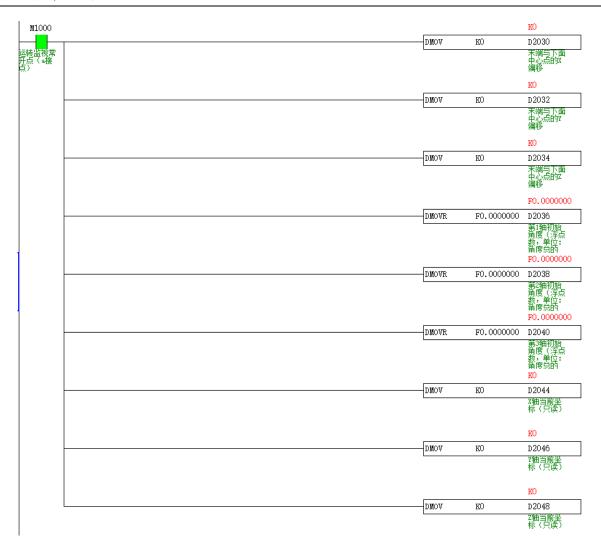
自动运行案例

如图: 用蜘蛛手在台面上画出正方形图形, 接的是脉冲伺服, 参数表如下:

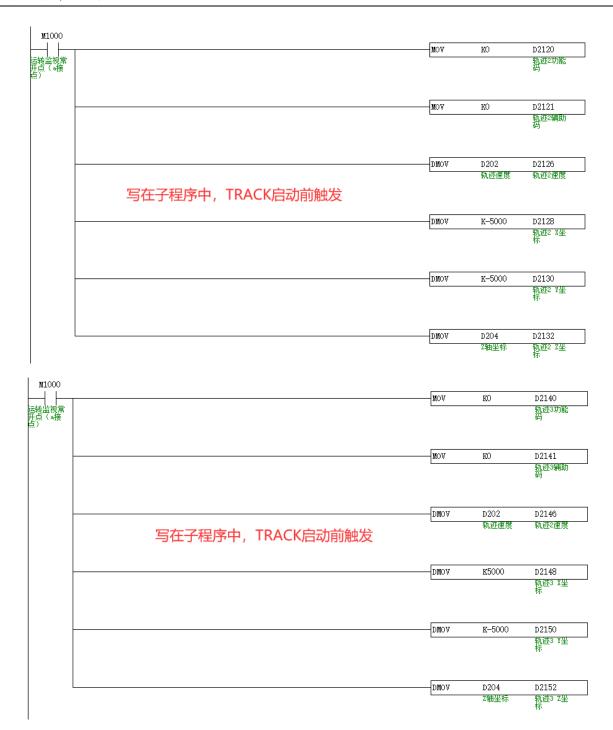

输入参数	参数名	数据类型	单位	值
\$1+0	虚轴轴号	16位	/	K8: Y20
S1+1	插补模式	16位	/	脉冲轴驱动: 写 K11
S1+2	总轨迹数	16位	/	K7
\$1+3	每条轨迹占用的 D 寄存器地址个数	16位	/	K20
\$1+4	拐弯加速度	32 位	频率/秒	K10000
\$1+6	当前正在做第几条轨迹	16位 (只读)	/	TRACK 启动前赋值一次,写 KO

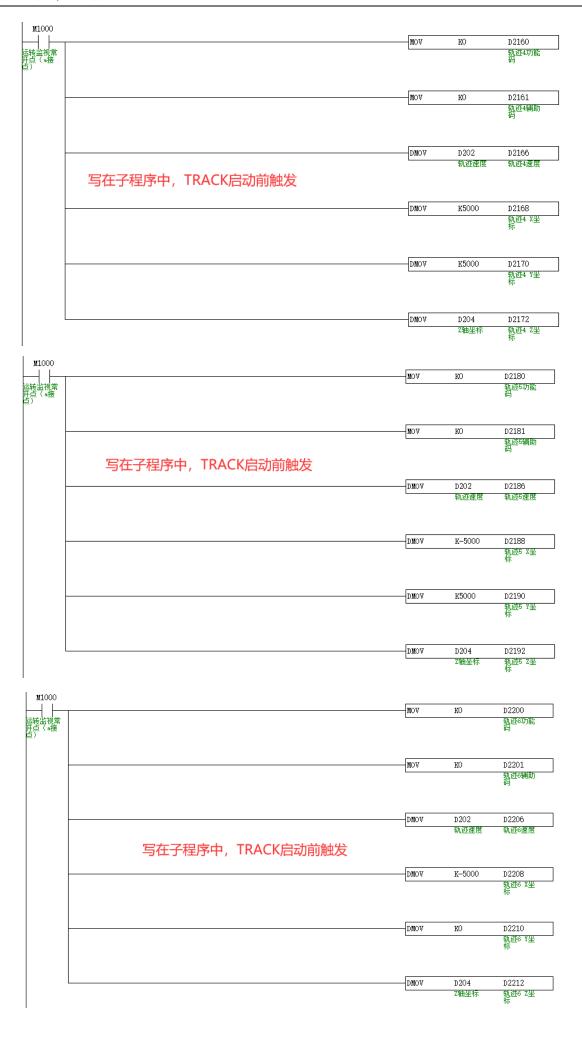
\$1+7	当前辅助码	16位(只读)	/	/
\$1+8	插补轴数	16位	/	K3
\$1+9	总轴数	16位	/	К3
\$1+10	第1个插补轴轴号	16位	/	KO: YO
\$1+11	第2个插补轴轴号	16位	/	K1: Y1
\$1+12	第3个插补轴轴号	16位	/	K2: Y2
\$1+13	第4个插补轴轴号	16位	/	无
\$1+14~\$1+15	上平台半径 D1	32 位	/	K4100,按实际填,假设当前为 1 个脉冲走 0.01mm
S1+16~S1+17	下平台半径 D1	32 位	/	K2700,按实际填,假设当前为 1 个脉冲走 0.01mm
\$1+18~\$1+19	上杆长度 L1	32 位	/	K12000,按实际填,假设当前为 1 个脉冲走 0.01mm
S1+20~S1+21	下杆长度 L2	32 位	/	K23000,按实际填,假设当前为 1 个脉冲走 0.01mm
S1+22~S1+23	第1轴旋转1圈脉冲数	32 位	/	K36000,按实际填,假设当前为 1 个脉冲走 0.01 度
S1+24~S1+25	第2轴旋转1圈脉冲数	32 位	/	K36000,按实际填,假设当前为 1 个脉冲走 0.01 度
S1+26~S1+27	第3轴旋转1圈脉冲数	32 位	/	K36000,按实际填,假设当前为 1 个脉冲走 0.01 度
\$1+28~\$1+29	第4轴旋转1圈脉冲数	32 位	/	1
\$1+30~\$1+31	末端与下面中心点的 X 偏移	32 位	/	КО
\$1+32~\$1+33	末端与下面中心点的丫偏移	32 位	/	КО
\$1+34~\$1+35	末端与下面中心点的 Z 偏移	32 位	/	КО
\$1+36~\$1+37	第1轴初始角度	32 位: 浮点数	角度	F0.00
\$1+38~\$1+39	第2轴初始角度	32 位: 浮点数	角度	F0.00
S1+40~S1+41	第3轴初始角度	32 位: 浮点数	角度	F0.00
S1+42~S1+43	预留	/	/	/
S1+44~S1+45	X 轴当前坐标(只读)	32 位	/	TRACK 启动前赋值一次,写 KO
S1+46~S1+47	Y轴当前坐标(只读)	32 位	/	TRACK 启动前赋值一次,写 KO
\$1+48~\$1+49	Z 轴当前坐标(只读)	32 位	/	TRACK 启动前赋值一次,写 KO


特别注意: 3 个关节电机正反转的方向是否正确,当电机已发脉冲数增加时,L1 上杆应该是朝下移动方向才是对的

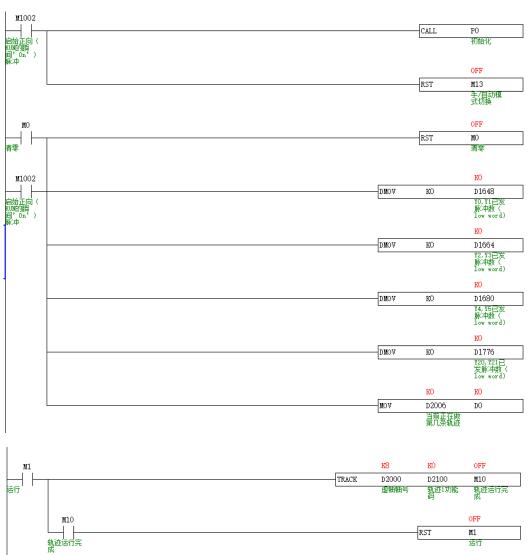

编程如下:

● 先编写 TRACK 关联的 S1 操作数程序:

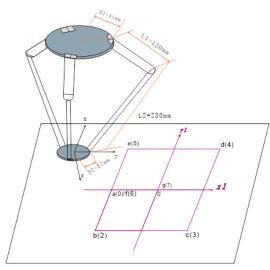




● 先编写 TRACK 关联的 S2 操作数程序,点坐标程序如下,以下程序 TRACK 执行时不能触发:



● 编写主程序, 指令导通前, 主虚轴, 从轴要复位。


手动示教模式

当 S3+3 为 ON 时,为手动模式(TRACK 指令导通,可手动执行 X、Y、Z 到指定点,类似于手动示教),S2 关联操作数:

输入参数	参数名	数据类型	单位	备注
	V +1 -7 -1 \rightarrow c	20.45	1.1-	手动模式下,设定X轴的速度
\$2+0~\$2+1	X 轴手动速度	32 位	Hz	注:首地址必须使用偶数,不得用奇数地址
S2+2~S2+3	Y轴手动速度	32 位	Hz	手动模式下,设定Y轴的速度
S2+4~S2+5	Z 轴手动速度	32 位	Hz	手动模式下,设定 Z 轴的速度
S2+6~S2+7	预留	32 位	/	系统用
S2+8~S2+9	预留	32 位	/	系统用
S2+10~S2+11	X轴手动加速度	32 位	Hz/s ²	手动模式下,设定X轴的加速度
S2+12~S2+13	Y轴手动加速度	32 位	Hz/s ²	手动模式下,设定Y轴的加速度
S2+14~S2+15	Z 轴手动加速度	32 位	Hz/s ²	手动模式下,设定 Z 轴的加速度
S2+16~S2+17	预留	32 位	/	系统用
S2+18~S2+19	预留	32 位	/	系统用
\$2+20~\$2+21	X 轴手动初速度	32 位	Hz	手动模式下,设定 X 轴的起始速度
\$2+22~\$2+23	Y轴手动初速度	32 位	Hz	手动模式下,设定Y轴的起始速度
S2+24~S2+25	Z 轴手动初速度	32 位	Hz	手动模式下,设定 Z 轴的起始速度
\$2+26~\$2+27	预留	32 位	/	系统用
\$2+28~\$2+29	预留	32 位	/	系统用
输入参数	参数名	数据类型	单位	备注
63.10	杜连马人如下石户出	DOOT.	,	所有轨迹运行完成后置位
\$3+0	轨迹已全部运行完成 	BOOT	/	注:首地址必须使用偶数,不得用奇数地址
				OFF: 虚轴由 TRACK 指令控制
S3+1	决定了虚轴的控制方式	BOOT	/	ON: 虚轴由 PLC 写定位程序控制
				此位仅在指令导通前设置有效
\$3+2	轨迹暂停	BOOT	/	当 S3+1 为 OFF 时,此位 ON 可暂停轨迹运行,为 OFF 则继续运行。
				ON: 手动模式
\$3+3	手/自动模式切换	BOOT	/	此位仅在指令导通前设置有效
S3+4	手动模式下,控制 X 轴移动	BOOT	/	为 ON, X 轴负方向移动, S3+3 为 ON 时有效
\$3+5	手动模式下,控制 X 轴移动	BOOT	/	为 ON, X 轴正方向移动, S3+3 为 ON 时有效
\$3+6	手动模式下,控制 Y 轴移动	BOOT	/	为 ON, Y 轴负方向移动, S3+3 为 ON 时有效
S3+7	手动模式下,控制 Y 轴移动	BOOT	/	为 ON, Y 轴正方向移动, S3+3 为 ON 时有效
\$3+8	手动模式下,控制 Z 轴移动	BOOT	/	为 ON, Z 轴负方向移动, S3+3 为 ON 时有效
\$3+9	手动模式下,控制 Z 轴移动	BOOT	/	为 ON, Z 轴正方向移动, S3+3 为 ON 时有效

案例演示

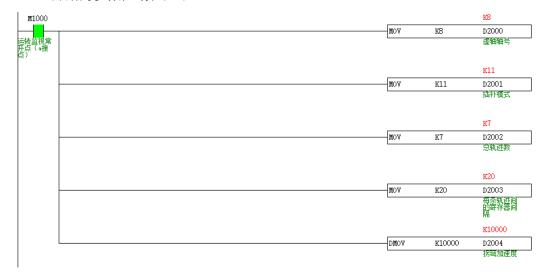
手动示教案例

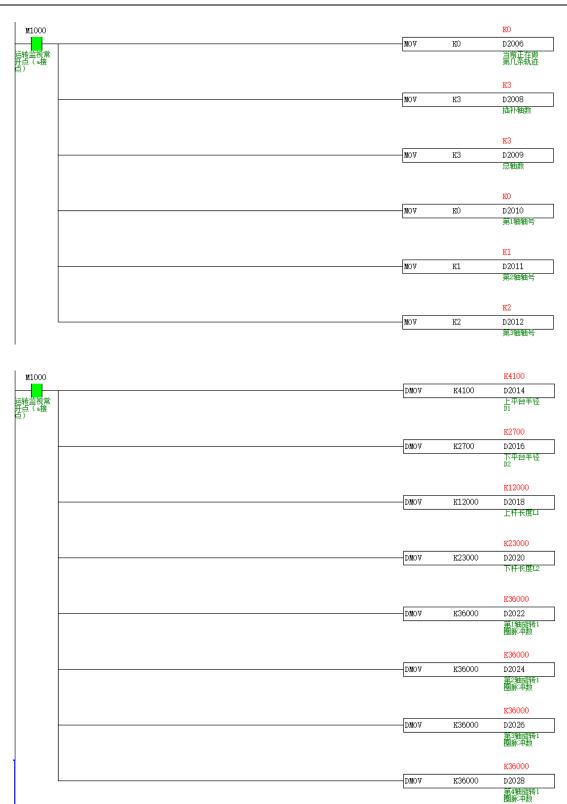
如图, X、Y、Z 为脉冲伺服, 在正方形坐标无法确认的情况下, 可通过手动示教功能演示从 a 移动到 g。假设精度 为发 1 个脉冲为 0.01mm,则 1mm 对应的脉冲为 100。发 1 个脉冲为 0.01 度,则 1 度对应的脉冲为 100。具体如下:

输入参数	参数名	数据类型	单位	值
\$1+0	虚轴轴号	16位	/	K8: Y20
\$1+1	插补模式	16位	/	脉冲轴驱动:写 K11
\$1+2	总轨迹数	16位	/	K7
\$1+3	每条轨迹占用的 D 寄存器地址个数	16位	/	K20
\$1+4	拐弯加速度	32 位	频率/秒	K10000
\$1+6	当前正在做第几条轨迹	16位 (只读)	/	TRACK 启动前赋值一次,写 KO
\$1+7	当前辅助码	16位 (只读)	/	/
\$1+8	插补轴数	16位	/	K3
\$1+9	总轴数	16 位	/	К3
\$1+10	第1个插补轴轴号	16位	/	K0: Y0
\$1+11	第2个插补轴轴号	16位	/	K1: Y1
\$1+12	第3个插补轴轴号	16位	/	K2: Y2
\$1+13	第4个插补轴轴号	16位	/	无
\$1+14~\$1+15	上平台半径 D1	32 位	/	K4100,按实际填,假设当前为1个脉冲走0.01mm
\$1+16~\$1+17	下平台半径 D1	32 位	/	K2700,按实际填,假设当前为1个脉冲走0.01mm
\$1+18~\$1+19	上杆长度 L1	32 位	/	K12000,按实际填,假设当前为 1 个脉冲走 0.01mm
\$1+20~\$1+21	下杆长度 L2	32 位	/	K23000,按实际填,假设当前为1个脉冲走0.01mm
\$1+22~\$1+23	第1轴旋转1圈脉冲数	32 位	/	K36000,按实际填,假设当前为1个脉冲走0.01度
\$1+24~\$1+25	第2轴旋转1圈脉冲数	32 位	/	K36000,按实际填,假设当前为1个脉冲走0.01度
\$1+26~\$1+27	第3轴旋转1圈脉冲数	32 位	/	K36000,按实际填,假设当前为1个脉冲走0.01度
\$1+28~\$1+29	第4轴旋转1圈脉冲数	32 位	/	/
\$1+30~\$1+31	末端与下面中心点的 X 偏移	32 位	/	K0
\$1+32~\$1+33	末端与下面中心点的丫偏移	32 位	/	K0
\$1+34~\$1+35	末端与下面中心点的 Z 偏移	32 位	/	КО
\$1+36~\$1+37	第1轴初始角度	32 位: 浮点数	角度	F0.00
\$1+38~\$1+39	第2轴初始角度	32 位: 浮点数	角度	F0.00
\$1+40~\$1+41	第3轴初始角度	32 位: 浮点数	角度	F0.00
\$1+42~\$1+43	预留	/	/	/
\$1+44~\$1+45	X 轴当前坐标(只读)	32 位	/	TRACK 启动前赋值一次,写 KO
\$1+46~\$1+47	Y轴当前坐标(只读)	32 位	/	TRACK 启动前赋值一次,写 KO
\$1+48~\$1+49	Z 轴当前坐标(只读)	32 位	/	TRACK 启动前赋值一次,写 KO

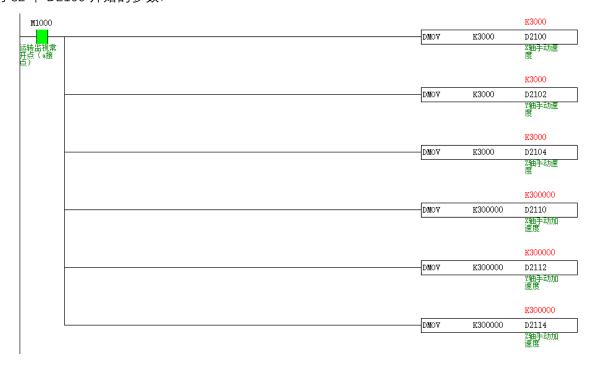

特别注意: 3 个关节电机正反转的方向是否正确,当电机已发脉冲数增加时,L1 上杆应该是朝下移动方向才是对的

手动示教模式, S2 坐标点赋值


输入参数	参数名	数据类型	单位	备注
S2+0~S2+1	X轴手动速度	32 位	Hz	手动模式下,设定 X 轴的速度
S2+2~S2+3	Y轴手动速度	32 位	Hz	手动模式下,设定Y轴的速度
S2+4~S2+5	Z轴手动速度	32 位	Hz	手动模式下,设定 Z 轴的速度
S2+6~S2+7	预留	32 位	/	系统用
S2+8~S2+9	预留	32 位	/	系统用
S2+10~S2+11	X轴手动加速度	32 位	Hz/s ²	手动模式下,设定 X 轴的加速度
S2+12~S2+13	Y轴手动加速度	32 位	Hz/s ²	手动模式下,设定Y轴的加速度
S2+14~S2+15	Z 轴手动加速度	32 位	Hz/s ²	手动模式下,设定 Z 轴的加速度
S2+16~S2+17	预留	32 位	/	系统用
S2+18~S2+19	预留	32 位	/	系统用
\$2+20~\$2+21	X轴手动初速度	32 位	Hz	手动模式下,设定X轴的起始速度
S2+22~S2+23	Y轴手动初速度	32 位	Hz	手动模式下,设定Y轴的起始速度
S2+24~S2+25	Z轴手动初速度	32 位	Hz	手动模式下,设定 Z 轴的起始速度
S2+26~S2+27	预留	32 位	/	系统用
\$2+28~\$2+29	预留	32 位	/	系统用
输入参数	参数名	数据类型	单位	备注
\$3+0	轨迹已全部运行完成	BOOT	/	所有轨迹运行完成后置位
\$3+1	决定了虚轴的控制方式	воот	/	OFF: 虚轴由 TRACK 指令控制 ON: 虚轴由 PLC 写定位程序控制 此位仅在指令导通前设置有效
\$3+2	轨迹暂停	воот	/	当 S3+1 为 OFF 时,此位 ON 可暂停轨迹运行,为 OFF 则继续运行。
\$3+3	手/自动模式切换	воот	/	ON: 手动模式 此位仅在指令导通前设置有效
\$3+4	手动模式下,控制 X 轴移动	BOOT	/	为 ON, X 轴负方向移动, S3+3 为 ON 时有效
\$3+5	手动模式下,控制 X 轴移动	BOOT	/	为 ON, X 轴正方向移动, S3+3 为 ON 时有效
\$3+6	手动模式下,控制 Y 轴移动	BOOT	/	为 ON, Y 轴负方向移动, S3+3 为 ON 时有效
\$3+7	手动模式下,控制 Y 轴移动	BOOT	/	为 ON, Y 轴正方向移动, S3+3 为 ON 时有效
\$3+8	手动模式下,控制 Z 轴移动	BOOT	/	为 ON, Z 轴负方向移动,S3+3 为 ON 时有效
\$3+9	手动模式下,控制 Z 轴移动	BOOT	/	为 ON, Z 轴正方向移动,S3+3 为 ON 时有效


编程如下:

● 写主程序,启动前 X、Y 轴需回原,当 M11 导通时,执行 TRACK 指令手动控制 M14~M19 的 ON 和 OFF,开始手动示教。

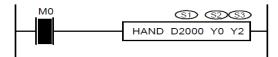

● 填写 S1 中 D2000 开始的参数,编程如下:



● 编程写 S2 中 D2100 开始的参数:

跟随式持续运动【HAND】

1) 指令概述


从轴跟随主轴(可以是编码器)持续动作,主轴方向改变,从轴也跟着改变。跟随的速度比例由参数决定。

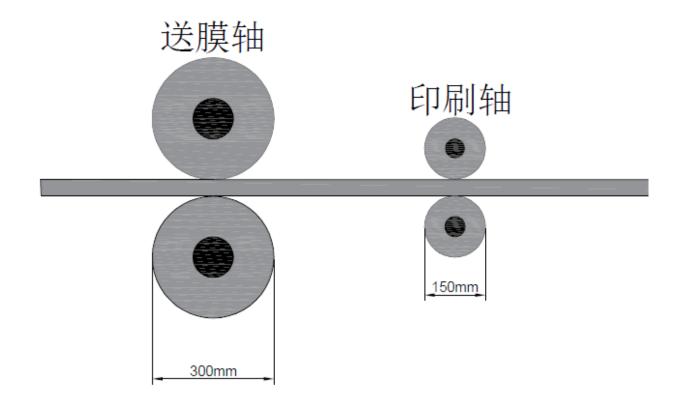
跟随式持续运动【HAND】						
执行条件	常 ON	适用机型	程序容量 30K 及以上机种均支持			
/	/	软件要求	2.6.050 及以上			

2) 操作数

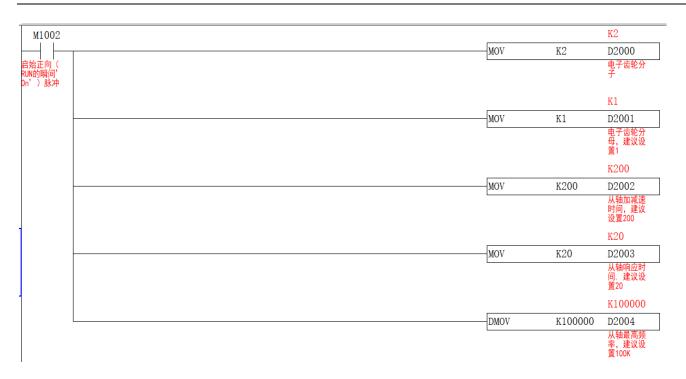
操作数	作用
\$1	指定输入参数起始地址
S2	指定主轴
\$3	指定从轴

3) 功能和动作

- S1 指定【输入参数起始地址】。占用寄存器 S1~S1+5
- S2 指定【主轴】。选定主轴,如主轴为脉冲,写主机上自带的脉冲口,如 Y0 或 Y2 或 Y4, 依次类推。如为编码器,写 C251, 仅支持 X0,X1 通道。
- S3 指定【从轴】。选定从轴,写主机上自带的脉冲口,如 Y0 或 Y2 或 Y4, 依次类推。
- ●当 M0 由 OFF 至 ON ,从轴轴组 S3 对主轴轴组 S2 进行跟随,跟随速度比例由 S1 与 S1+1 共同决定,从轴跟随加减速由 S1+2 决定,响应时间由 S1+3 决定。
- ●HAND 指令使能后,主轴轴组可以用脉冲指令让其动作,从轴按照设置比例进行跟随。
- ●主轴发的脉冲 /电子齿轮比 =从轴发的脉冲,主轴当前频率 / 电子齿轮比 = 从轴当前频率
- ●该指令与 CAMSYNC 相比,优点在于可以跟随正反两个方向,而 CAMSYNC 只能跟随一个方向。缺点在于 CAMSYNC 指令更加灵活,具有周期定位性,功能更强大。
- ●注意:假设电子齿轮比设置为 10,从轴最高频率设置为 100K,主轴最多只能跑 10K,否则从轴会出现位置偏差

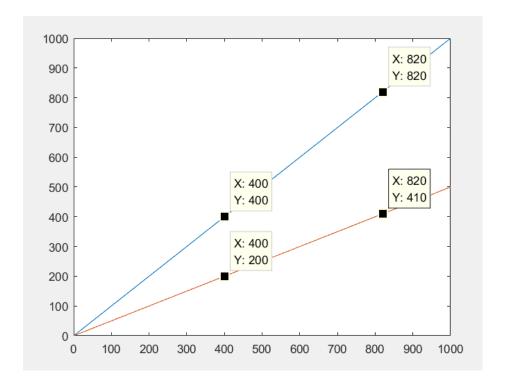

4) 相关参数

输入参数	参数名	数据类型	单位	备注
\$1+0	电子齿轮分子	16 位	/	/ 注: 首地址必须使用偶数,不得用奇数地址 希望对应从轴输出方向反过来,把电子齿轮的分子改成负 数即可。
\$1+1	电子齿轮分母	16位	/	与 S1+0 共同决定跟随比例
S1+2	从轴加减速时间	16位	Ms	建议设置 200
\$1+3	从轴响应时间	16位	Ms	建议设置 20
\$1+4~\$1+5	从轴最高频率	32 位	脉冲/秒	限制从轴的最高频率,防止参数设置不当飞车
S1+6~S1+7	负限位	32 位	脉冲	赋值 H80000000 表示不启用此功能 注意:此功能需用 2.7.166 以上的编程软件版本


				此功能 JH、JS、JHM、JSM、JT、JTM 系列的 PLC 不支持
\$1+8~\$1+9	正限位	32 位	脉冲	赋值 H7FFFFFFF 表示不启用此功能 注意: 此功能需用 2.7.166 以上的编程软件版本 此功能 JH、JS、JHM、JSM、JT、JTM 系列的 PLC 不支持
输入参数	参数名	数据类型	单位	备注
				可参考轴号定义
S2	主轴	16 位	/	如主轴为脉冲, Y0 轴写 K0, Y2 轴写 K1, 依次类推 如主轴为编码器,写 C251, 仅支持 X0,X1 通道。
\$2 输入参数	主轴 参数名	16 位 数据类型	单位	如主轴为脉冲, Y0 轴写 K0,Y2 轴写 K1,依次类推

5) 举例

举例:要求送膜辊与印刷辊保持线速度一致,送料辊的直径为 300mm,一圈脉冲数为 2000,印刷辊的直径为 150mm,一圈脉冲数为 2000.


1.送膜辊的直径与印刷辊的直径成比例关系,所以周长也为比例关系,又因为两轴一圈脉冲数相等,所以脉冲当量也成比例关系,为 2: 1, 印刷轴的速度为送料轴速度的 2倍, 两轴就可以保持线速度同步, 对 S1 输入参数的梯形图如下

2.参数设定好以后,将 M0 置 ON,从轴开始按照设定参数进行比例跟随。梯形图如下

```
MO
                                                                              HAND
                                                                                            D2000
                                                                                                      Y0
                                                                                                               Y2
启动
                                                                                            电子齿轮分子
                                                                                                      K0轴
                                                                                                               K1轴
                                                                                                  SET
                                                                                                               M1
                                                                                                                运行
   M1
                                                                               DPLSV
                                                                                            K10000
                                                                                                      Y0
                                                                                                                Y1
运行
```

3.两轴的脉冲曲线如下, Y轴为已发脉冲数。蓝线代表印刷棍的脉冲位置, 红线代表送料棍的脉冲位置。

跟随式持续运动【FOLLOW】

1) 指令概述

从轴跟随主轴(可以是编码器)持续动作、主轴方向改变、从轴也跟着改变。跟随的速度比例由参数决定。

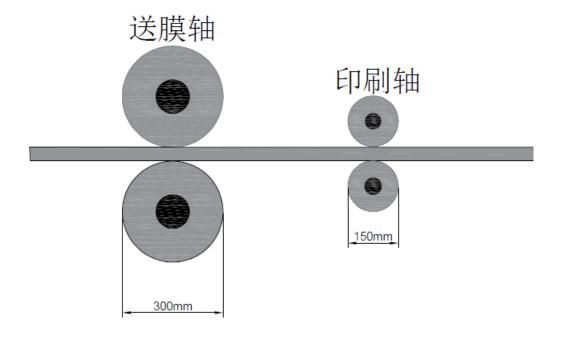
跟随式持续运动【FOLLOW】						
执行条件	常 ON	适用机型	常规机种: JSC、JHC 带 M 机种: JM、JEM、JHM、JH2M、JTM、 JSM、JHCM、JTCM、JT5M			
/	/	软件要求	2.6.050 及以上			

2) 操作数

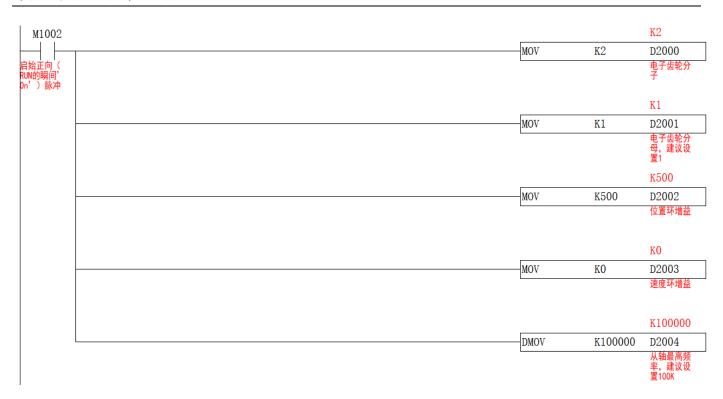
操作数	作用
\$1	指定主轴轴号
S2	指定输入参数起始地址
S3	指定从轴轴号

3) 功能和动作

- S1 指定【主轴】。选定主轴,如主轴为脉冲,写主机上自带的脉冲口,如 Y0 或 Y2 或 Y4,依次类推。如为编码器,写 C251,仅支持 X0,X1 通道。
- S2 指定【输入参数起始地址】。占用寄存器 S1~S1+5
- S3 指定【从轴】。选定从轴轴号
- ●当 M0 由 OFF 至 ON ,从轴轴组 S3 对主轴轴组 S1 进行跟随,跟随速度比例由 S2 与 S2+1 共同决定,从轴跟随加减速由 S2+2 决定,响应时间由 S2+3 决定。
- ●FOLLOW 指令使能后,主轴轴组可以用脉冲指令让其动作,从轴按照设置比例进行跟随。
- ●主轴发的脉冲 /电子齿轮比 =从轴发的脉冲,主轴当前频率 / 电子齿轮比 = 从轴当前频率
- ●该指令与CAMSYNC相比,优点在于可以跟随正反两个方向,可以对从轴使用CAMADD运动叠加,而CAMSYNC 只能跟随一个方向。缺点在于 CAMSYNC 指令更加灵活,具有周期定位性,功能更强大。与 HAND 指令相比, 精度更高。
- ●注意:假设电子齿轮比设置为 10,从轴最高频率设置为 100K,主轴最多只能跑 10K,否则从轴会出现位置偏差

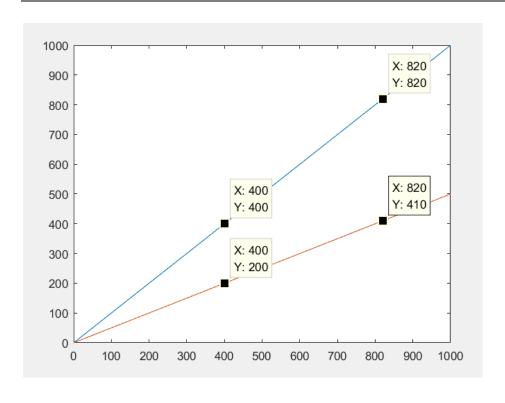

4) 相关参数

输入参数	参数名	数据类型	单位	备注
\$1	主轴	16 位	/	可参考 <u>轴号定义</u> 如主轴为脉冲, Y0 轴写 K0, Y2 轴写 K1, 依次类推 如主轴为编码器,写 C251, 仅支持 X0,X1 通道。
输入参数	参数名	数据类型	单位	备注


S2+0	电子齿轮分子	16 位	/	/ 注: 首地址必须使用偶数,不得用奇数地址
S2+1	电子齿轮分母	16 位	/	与 S2+0 共同决定跟随比例,为负数时,从轴可切换方向
\$2+2	位置环增益	16位	Ms	建议设置 500
\$2+3	速度环增益	16位	Ms	建议设置 0
S2+4	从轴最高频率	32 位	脉冲/秒	限制从轴的最高频率,防止参数设置不当飞车
输入参数	参数名	数据类型	单位	备注
S3	从轴	16位	/	与 S1+0 同理

5) 举例

举例:要求送膜辊与印刷辊保持线速度一致,送料辊的直径为 300mm,一圈脉冲数为 2000,印刷辊的直径为 150mm,一圈脉冲数为 2000.


1.送膜辊的直径与印刷辊的直径成比例关系,所以周长也为比例关系,又因为两轴一圈脉冲数相等,所以脉冲当量也成比例关系,为 2: 1, 印刷轴的速度为送料轴速度的 2倍, 两轴就可以保持线速度同步, 对 S1 输入参数的梯形图如下

2.参数设定好以后, 将 M0 置 ON, 从轴开始按照设定参数进行比例跟随。梯形图如下

```
K2
   M0
                                                                            FOLLOW
                                                                                         Y0
                                                                                                  D2000
                                                                                                            Y2
启动
                                                                                         KO轴
                                                                                                  电子齿轮分子
                                                                                               SET
                                                                                                            M1
                                                                                                            运行
   M1
                                                                            DPLSV
                                                                                         K10000
                                                                                                  Y0
                                                                                                            Y1
                                                                                                  K0轴
                                                                                                            方向
```

3.两轴的脉冲曲线如下, Y轴为已发脉冲数。蓝线代表印刷棍的脉冲位置, 红线代表送料棍的脉冲位置。

追剪【CAMCUT】

1) 指令概述

剪切机构平行于被剪切物体,剪切机构做往复运动,通过改变在非同步区的速度达到改变剪切长度的目的。

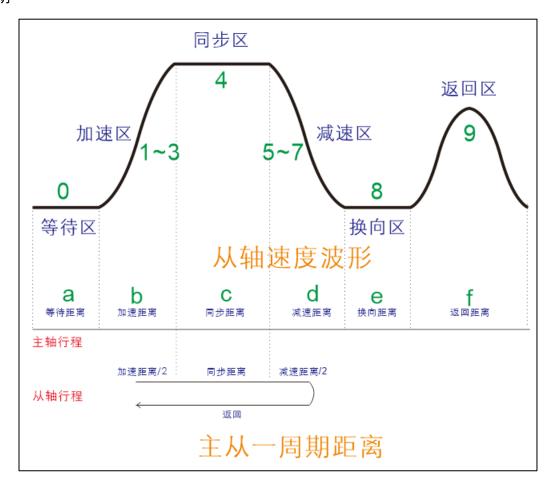
追剪【CAMCUT】						
执行条件	常ON	适用机型	带 M 机种: JM、JEM、JHM、JH2M、JTM、 JSM、JHCM、JTCM、JT5M			
/	/	软件要求	2.6.050 及以上			

2) 操作数

操作数	作用
-----	----

S1	指定主轴输入参数起始地址
S2	指定从轴输入参数起始地址
\$3	指定输出状态位起始地址

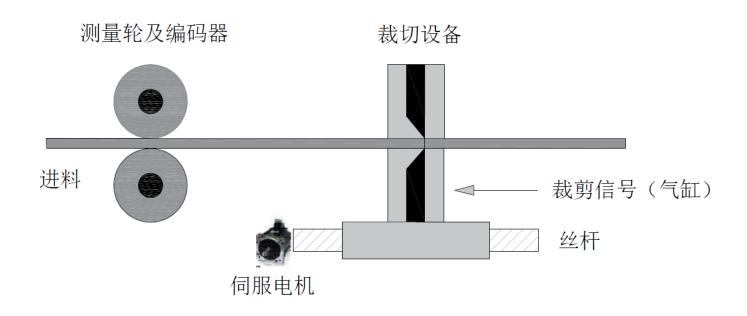
3) 功能和动作

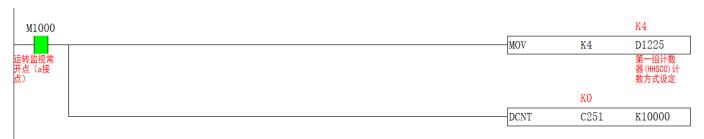

- S1 指定【主轴输入参数起始地址】。占用寄存器 S1~S1+7
- S2 指定【从轴输入参数起始地址】。占用寄存器 S2~S2+23
- S3 指定【输出状态位起始地址】。占用继电器 S3~S3+3
- ●接通指令前,让主轴从轴回至原点,把从轴当前脉冲数(特殊寄存器)与 S2+22 清零。
- ●当 M0 由 OFF 至 ON ,从轴轴组对主轴轴组进行追剪式往复运动,主轴行走至 S2+4 等待距离后,从轴开始从起点位置曲线加速行走,直至主轴行走完 S2+6 加速距离后,进入同步区,两轴线速度一致,行走完 S2+8 同步距离后,从轴开始曲线减速动作,主轴行走完 S2+10 减速距离后,从轴开始行走换向距离,完成后返回至起点位置,同时 S3+1 置 ON。主轴走完 S1+4 后,S3+3 置 ON。
- ●CAMCUT 指令使能后,主轴轴组可以用脉冲指令让其动作,从轴按照设置参数进行往复运动。
- ●注意: 改变一周期脉冲数后,下周期生效。S2+14要大于S2+6-S2+12之合。

4) 相关参数

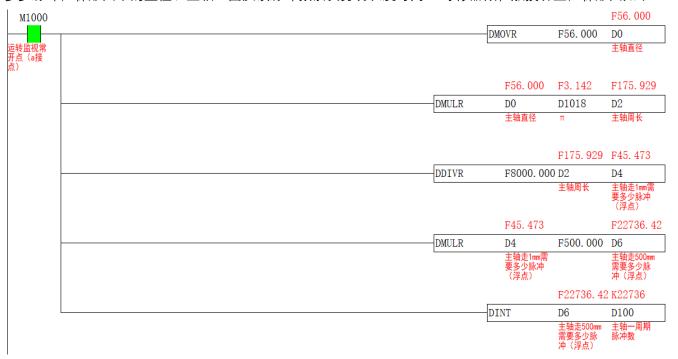
输入参数	参数名	数据类型	单位	备注
\$1+0	主轴轴号	16位	/	可参考 <u>轴号定义</u> 如主轴为脉冲, Y0 轴写 K0, Y2 轴写 K1, 依次类推 如主轴为编码器,写 K-1, 仅支持 X0,X1 通道。 注: 首地址必须使用偶数,不得用奇数地址
\$1+1	预留	16位	/	/
\$1+2	位置环增益	16 位	/	默认写 K500
\$1+3	速度环增益	16 位	/	默认写 KO
S1+4	主轴一周期脉冲数	32 位	脉冲	行走一个产品长度所需要的脉冲数
\$1+6	主轴一周期距离	32 位	0.01mm	一个产品的长度
输入参数	参数名	数据类型	单位	备注
\$2+0	从轴轴号	16位	/	与 S1+0 同理 注: 首地址必须使用偶数,不得用奇数地址
S2+1	从轴步骤	16位(只读)	/	当前运行到哪个步骤(0~9)
S2+2	从轴比例	浮点数	0.01mm	从轴 1 圈行走距离(0.01mm)/1 圈脉冲
S2+4	等待距离	32 位	0.01mm	主轴匀速动作,从轴不动作的距离
S2+6	加速距离	32 位	0.01mm	主轴匀速动作,从轴曲线加速的距离,建议与 S2+10 一致
S2+8	同步距离	32 位	0.01mm	主轴匀速动作,从轴与主轴线速度同步的距离
S2+10	减速距离	32 位	0.01mm	主轴匀速动作,从轴与主轴脱离同步进行减速的距离
S2+12	换向距离	32 位	0.01mm	主轴匀速动作,从轴进行换向准备返回的距离
S2+14	从轴行程	32 位	0.01mm	软限位保护,设置不当会导致从轴动作不正常
S2+16	偏移距离	32 位	0.01mm	从轴整体偏移的距离,适合在调整偏差的时候用
S2+18	功能码	32 位	/	0 代表来回追剪,如单方向则写追剪轴单周期脉冲数
S2+20	从轴最高频率	32 位	脉冲/秒	限制从轴的最高频率,防止参数设置不当飞车
S2+22	主轴当前脉冲位置	32 位	/	主轴当前脉冲映射地址,工作在零至一周期内
S2+24	回退距离	32 位	0.01mm	为0代表退回原点,建议设置0

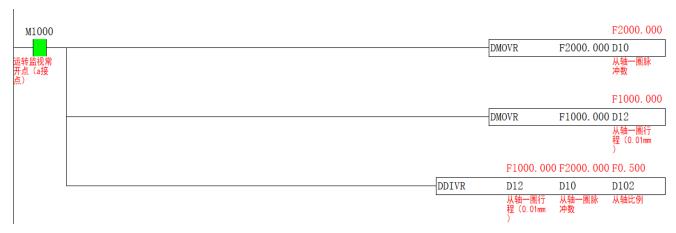
S2+26	从站起始位置	32 位	0.01mm	建议设置 0
				为 0 表示返回距离自动计算,有数值表示以参数设置为
S2+28	返回距离	32 位	0.01mm	准,若此参数大于系统计算值,则以系统计算值为准。返
				回距离不宜设置过小,否则可能引起从站返回飞车。
				默认为 0,返回速度的线性度由系统决定。该功能主要是
				针对主轴为编码器模式时,返回速度防抖,使返回速度更
				平滑,所以用虚拟主轴频率
50.00	虚拟主轴频率决定返回	20.4	D> _L /T.L	若写入数值,则如下:
S2+30	速度线性平滑度	32 位	脉冲/秒	主轴为脉冲,则写主轴频率。
				主轴为编码器,可以写 LDP M1013,获取编码器每秒接收
				到的脉冲数,写入的值比获取的编码器频率略大,但不能
				实时写入,一个追剪周期更新一次即可。同时可以固定写
+人 1 公 坐	⇔ ₩. ₩	***************************************	× /-	设备工作在最快时对应的主轴频率。
输入参数	参数名	数据类型	单位	备注
\$3+0	同步信号输出	BOOT	/	从轴进入同步去区时 ON,脱离同步区时 OFF
S3+1	追剪轴已工作一周期	BOOT	/	从轴完成一周期反回原点时 ON,由 PLC OFF
S3+2	追剪轴超速标志	BOOT	/	从轴速度超过 S2+20 时 ON
S3+3	主轴已工作一周期	BOOT	/	主轴跑完 S1+4 一周期脉冲数时 ON
S3+4	同步终止	BOOT	/	从轴工作在同步区时置 ON,则立刻结束同步,提前返回
				叠加功能需要在同步区执行,叠加后的位置相对叠加前的
				位置进行了偏移。
				● 为 OFF:
				叠加后的偏移量会一直保持,不返回到 0 点,直到
				CAMCUT指令断开,重新接通偏移量清零,在同步
				时 只要主轴的移动量有达到同步距离则结束同
S3+5	配合 CAMADD 叠加工作	BOOT	/	步。
	模式设定			● 为 ON:
				1、 从轴正向追时可执行叠加,固定返回到 0 点,每次
				返回都会清空叠加值,并且在同步时多次正向叠
				加。
				2、 叠加量+主轴已跑的同步距离>=设定的同步距离就结 束同步,多次反向叠加+主轴已跑的同步距离<设定
				的同步距离,则同步永不结束。

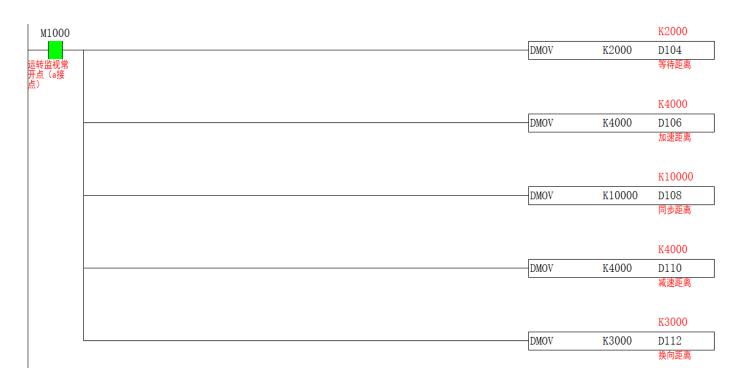

5) 原理说明

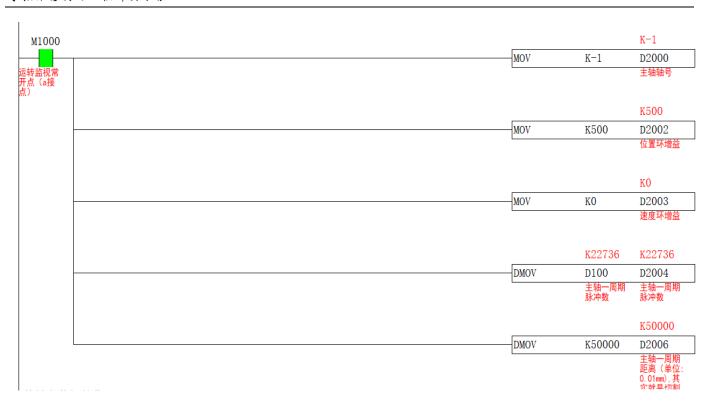

- 1、主轴一周期距离=剪切长度(L)=等待距离(a)+加速距离(b)+同步距离(c)+减速距离(d)+换向距离(e)+返回距离(f)
- 2、从轴去向行程=加速距离/2+同步距离+减速距离/2
- 3、图中的 0~9 表示的是 S2+1: 从轴当前运行步骤。

6) 举例


举例:测量轮的直径为 56mm,编码器为 2000线,接入 PLC 输入端 X0,X1。伺服电机由 PLC 输出端 Y0,Y1 控制,裁切设备左右移动由伺服电机控制,伺服转一圈(2000 脉冲)丝杆走 10mm,裁剪汽缸由 PLC 输出端 Y4 控制。要求切出的长度为 500mm。

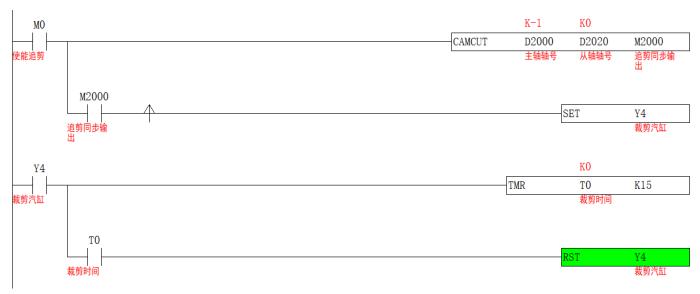

1. 先将高速计数输入采用 4 倍频,测量轮的一圈反馈脉冲数为 2000*4=8000 (脉冲)。


2.计算主轴走 1mm 需要多少脉冲,用于填入 S1+4。已知测量轮的直径为 56mm,周长为 56*π≈175.9mm,又因为测量轮的一圈反馈脉冲数为 8000,所以测量轮走 1mm 需要 8000/175.9≈45(脉冲)。在计算出走 500mm 需要 8少脉冲,梯形图中的直径、主轴一圈反馈脉冲数以及剪切长度可用 D 寄存器做在触摸屏上,梯形图如下

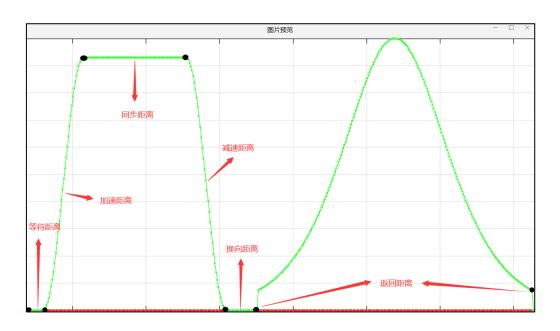

3.计算出 S2+2 从轴比例,从轴一圈距离 (0.01mm) /从轴一圈脉冲数=1000/2000=0.5,梯形图如下

4.根据 剪切长度=等待距离+加速距离+同步距离+减速距离+换向距离+返回距离来确定出 S2+4 至 S2+12 的参数,由剪切长度为 500mm,将同步距离设为 100mm,加减速距离为 40mm,等待距离为 20mm,换向距离为 30mm,则返回距离=500-(100+40+40+20+0)=270,距离参数可根据现场情况自行调整。

5. S1 主轴输入参数梯形图如下



5. S2 从轴输入参数梯形图如下


M1000			КО
£± 11,540 A46	MOV	КО	D2020
转监视常 点(a接)			从轴轴号
		F0. 500	F0. 500
	DMOVR	D102	D2022
		从轴比例	从轴比例(浮点数)=1 圈距离(单 位,
		K2000	K2000
	DMOV	D104	D2024
		等待距离	等待距离(单位: 0.01mm)
		K4000	K4000
	DMOV	D106	D2026
		加速距离	加速距离(单位: 0.01mm)
		K10000	K10000
	DMOV	D108	D2028
		同步距离	同步距离(单位: 0.01mm)
		K4000	K4000
}	DMOV	D110	D2030
		减速距离	减速距离(单位: 0.01mm)
		К3000	K3000
	DMOV	D112	D2032
		换向距离	换向距离(单位: 0.01mm)
			K30000
	DMOV	К30000	D2034
			从轴行程(单位: 0.01mm)
			КО
	DMOV	КО	D2036 偏移距离(单位: 0.01mm)
			KO
	DMOV	КО	D2038
			0代表是来回 追剪,单方向 设置追剪轴 曲国即
	DIAT	17100000	K100000
	DMOV	K100000	D2040 从轴最高频 率
			КО
Į	DMOV	КО	D2042
			主轴当前脉 冲位置

7.从轴回完原点并将当前脉冲数清零后,接通 CAMCUT 指令,从轴按照设置参数进行往复运动。裁切信号在 S3+0 同步信号发出时置 ON,气缸输出时间由现场工艺为准。梯形图如下

8.轴组运行的速度曲线如下

追切式追剪【CAM】

1) 指令概述

与普通追剪不同,追切式追剪无需设置主轴一周期长度,位置由传感器感应,可以剪切不通长度的产品。

追切式追剪【CAM】				
执行条件	常ON	适用机型	带 M 机种:JM、JEM、JHM、JH2M、JTM、 JSM、JHCM、JTCM、JT5M	
/	/	软件要求	2.6.050 及以上	

2) 操作数

操作数	作用
\$1	指定主轴输入参数起始地址
S2	指定从轴输入参数起始地址
S3	指定输出状态位起始地址

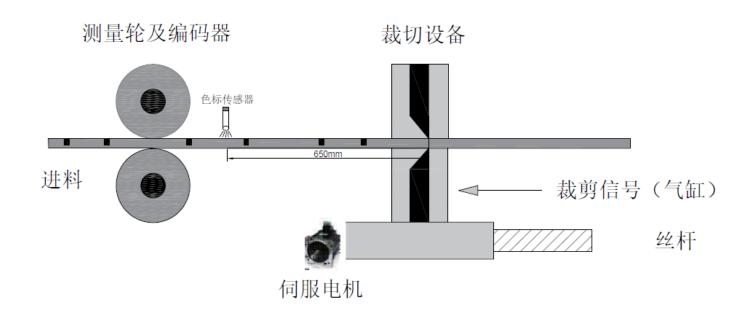
3) 功能和动作

- S1 指定【主轴输入参数起始地址】。占用寄存器 S1~S1+5
- S2 指定【从轴输入参数起始地址】。占用寄存器 S2~S2+39
- S3 指定【输出状态位起始地址】。占用继电器 S3~S3+5
- ●接通指令前,让主轴从轴回至原点,把从轴当前脉冲数(特殊寄存器)与 S2+14、S2+6、S2+7 清零。
- ●当 M0 由 OFF 至 ON ,从轴轴组对主轴轴组进行追剪式往复运动。S3+0 置 ON 时,系统记录下主轴当前位置,

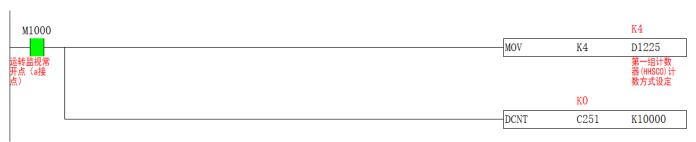
进行堆栈,数据存入 S2+4 指定寄存器内,同时 S2+6 加 1,行走 S2+18 距离时,系统自动取栈,同时 S2+7 加 1,从轴开始进行追剪动作。

●注意: CAM 指令使能后, 主轴轴组可以用脉冲指令让其动作, 从轴按照设置参数进行往复运动。

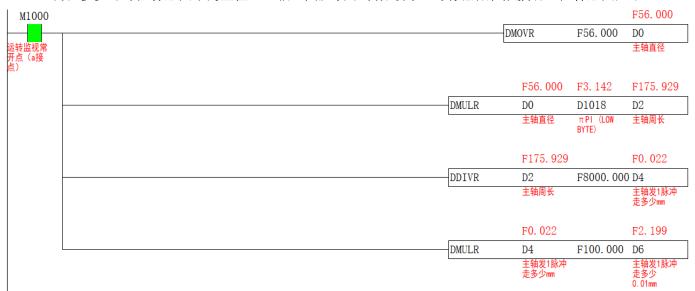
●注意: 改变从轴距离参数后,下周期生效,本周期不生效。S2+14要大于S2+6-S2+12之合。

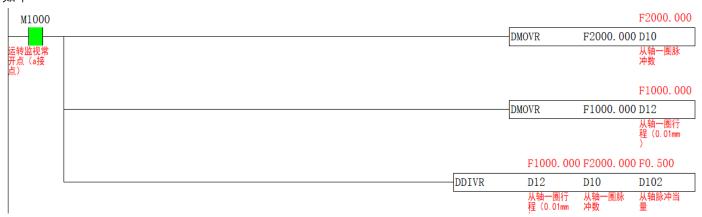

4) 相关参数

输入参数	参数名	数据类型	单位	备注	
\$1+0	主轴轴号	16位	/	可参考 <u>轴号定义</u> 如主轴为脉冲,Y0 轴写 K0, Y2 轴写 K1, 依次类推 如主轴为编码器,写 K-1, 仅支持 X0,X1 通道。 注:首地址必须使用偶数,不得用奇数地址	
\$1+1	功能码	16位	/	固定写 K14	
\$1+2	位置环增益	16位	/	默认写 K500	
\$1+3	速度环增益	16位	/	默认写 KO	
\$1+4	主轴脉冲当量	浮点数	0.01mm	主轴 1 圈距离 (0.01mm) /主轴 1 圈脉冲数,即发一个脉冲走多少 0.01mm	
输入参数	参数名	数据类型	单位	备注	
\$2+0	从轴轴号	16位	/	与 S1+0 同理 注: 首地址必须使用偶数,不得用奇数地址	
S2+1	从轴步骤	16位 (只读)	/	当前运行到哪个步骤	
\$2+2	每个产品允许的最小间 距	32 位	0.01mm	如果测出来的产品长度小于这个值则不入栈,进行过滤 设置时 S2+2>加速距离+同步距离+减速距离+换向距离+返 回距离(最小的返回距离)	
S2+4	预存坐标起始 D 寄存器	16位	/	存入长度数据的起始地址,写 K4000,则从 D4000 开始	
\$2+5	预存长度	16位	/	如写 K10,则占用 20 个地址,起始地址由 S2+4 决定	
S2+6	预存当前指针位置	16位 (只读)	/	监控当前存了几笔数据	
S2+7	取出当前指针位置	16位(只读)	/	监控当前取出的几笔数据	
\$2+8~\$2+9	从轴脉冲当量	浮点数	0.01mm	从轴 1 圈距离 (0.01mm) /从轴 1 圈脉冲数,即发一个脉冲走多少 0.01mm	
\$2+10~\$2+11	从轴行程	32 位	0.01mm	软限位保护,设置不当会导致从轴动作不正常 从轴行程>=(加速距离+减速距离)/2+同步距离	
S2+12~S2+13	从轴最高频率	32 位	脉冲/秒	限制从轴的最高频率,防止参数设置不当飞车	
S2+14~S2+15	主轴当前脉冲位置	32 位	/	主轴当前脉冲映射地址,工作在零至一周期内	
S2+16~S2+17	指定的压入数据	32 位	脉冲数	指定压入的数据长度,配合 M+4 使用	
S2+18~S2+19	取栈偏移量	32 位	0.01mm	传感器与从轴切点之间的距离	
S2+20~S2+21	加速距离	32 位	0.01mm	主轴匀速动作,从轴曲线加速的距离,建议与 S2+24 一致	
\$2+22~\$2+23	同步距离	32 位	0.01mm	主轴匀速动作,从轴与主轴线速度同步的距离	
S2+24~S2+25	减速距离	32 位	0.01mm	主轴匀速动作,从轴与主轴脱离同步进行减速的距离	
S2+26~S2+27	换向距离	32 位	0.01mm	主轴匀速动作,从轴进行换向准备返回的距离	
\$2+28~\$2+29	返回距离	32 位	0.01mm	如实际剩下返回距离比设置的返回距离小,以实际为准。	
\$2+30~\$2+31	功能码	32 位	/	0 代表来回追剪,如单方向则设置从轴一个周期脉冲数, (如果是凸轮结构,可理解为从轴一圈脉冲数)	
\$2+32~\$2+33	虚拟主轴速度	32 位	/	● 为 0 不使用此功能 ● 有数值时为虚拟工作在返回时的主轴速度(单位:脉冲/秒) 如主轴是脉冲轴,这里就对应主轴的脉冲频率 如主轴是编码器就对应编码器每秒接收到的脉冲数。 此参数可以填机台开最快时的主轴速度。 也可以用 LDP M1013 获取主轴每秒的变化量来填入,但不要实时填入,一个追剪周期填入一次即可。	

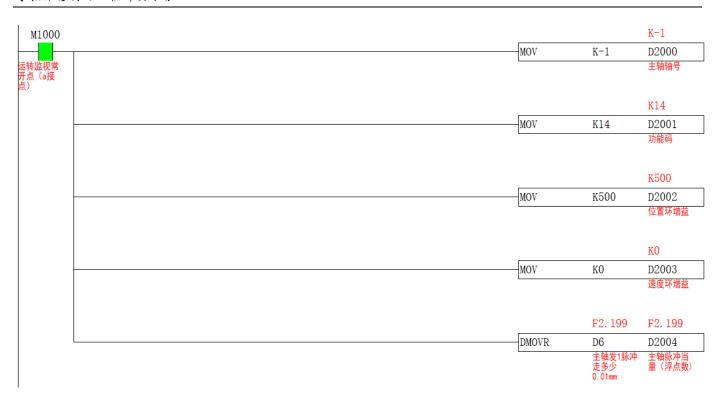

\$2+34~\$2+35	返回速度	32 位		此参数为 0 由系统返回速度决定 有数值返回以 DDRVA K0 S2+34 的方式跑返回,加减速时间也和 DDRVA 一样的方式设置。 一般用于传感器感应物料装得比较近,系统无法及时返回
\$2+36~\$2+37	调整距离 不返回原点时用	32 位	0.01mm	此参数为 0 则不使用此功能 有数值用于不回原点连续追剪的场景,调整距离设置越大,做完一个产品切换到另一个产品时的加减速曲线就越柔和,但效率就越低。一般设置加速距离+减速距离总和的 80%即可
\$2+38	错误代码指示	16 位	/	K1-跑返回时产生错误,典型问题是跑运动叠加过多,错过下个的压入数据,常见问题在用户运动叠加和压入数据同时了。
\$2+39	预留	/	/	/
输入参数	参数名	数据类型	单位	备注
\$3+0	坐标存入	BOOT	/	为 ON 存入一个坐标,由系统 OFF
S3+1	同步信号输出	BOOT	/	从轴进入同步去区时 ON,脱离同步区时 OFF
\$3+2	追剪轴超速标志	BOOT	/	从轴速度超过 S2+20 时 ON
\$3+3	追剪轴已工作一周期	воот	/	从轴完成一周期反回原点时 ON,由系统设置为 ON,由PLC 控制 OFF
\$3+4	工作模式	воот	/	ON 表示压入的数据从 \$2+16 指定的数据压入,为 OFF 表示数据由传感器控制压入,则压入的是主轴位置,传感器压入数据,建议写在输入中断程序中。
\$3+5	同步终止	BOOT	/	从轴工作在同步区时置 ON,则立刻结束同步,提前返回
\$3+6	配合 CAMADD 叠加工作模式设定 一般用于正向叠加	воот	/	叠加功能需要在同步区执行,叠加后的位置相对叠加前的位置进行了偏移。 ● 为 OFF: 叠加后的偏移量会一直保持,不返回到 0 点,直到 CAMCUT 指令断开,重新接通偏移量清零,在同步时 只要主轴的移动量有达到同步距离则结束同步。 ● 为 ON: 1、从轴正向追时可执行叠加,固定返回到 0 点,每次返回都会清空叠加值,并且在同步时多次正向叠加。 2、叠加量+主轴已跑的同步距离>=设定的同步距离就结束同步,多次反向叠加+主轴已跑的同步距离<设定的同步距离,则同步永不结束。

5) 举例


举例:测量轮的直径为 56mm,编码器为 2000 线,接入 PLC 输入端 X0,X1。伺服电机由 PLC 输出端 Y0,Y1 控制,裁切设备左右移动由伺服电机控制,伺服转一圈 (2000 脉冲) 丝杆走 10mm,裁剪汽缸由 PLC 输出端 Y4 控制。下图中的裁切设备已在原点位置,色标传感器 X2 到裁切设备切点的距离为 650mm,已知最短物料的长度为 200mm,最长物料长度不固定,要求正好切在点图中黑点位置,


1. 先将高速计数输入采用 4 倍频,测量轮的一圈反馈脉冲数为 2000*4=8000 (脉冲)。

2.计算主轴走 0.01mm 需要多少脉冲,用于填入 S1+4。已知测量轮的直径为 56mm,周长为 56*π≈175.9mm,又 因为测量轮的一圈反馈脉冲数为 8000,1 脉冲走多少 mm=主轴周长/一圈脉冲数=175.9/8000=0.022。在计算出走 0.01mm 需要多少脉冲,梯形图中的直径、主轴一圈反馈脉冲数可用 D 寄存器做在触摸屏上,梯形图如下


3.计算出 S2+8 从轴脉冲当量,从轴一圈距离 (0.01mm) /从轴一圈脉冲数=1000/2000=0.5,梯形图如下,梯形图如下

4.根据 剪切距离=等待距离+加速距离+同步距离+减速距离+换向距离+返回距离 来确定出 S2+20 至 S2+28 的参数,由剪切长度最短为 200mm,将同步距离设为 40mm,加减速距离为 20mm,换向距离为 20mm,则返回距离为 200-(40+20+20+20)=100mm,距离参数可根据现场情况自行调整。梯形图如下

5. S1 主轴输入参数梯形图如下

5. S2 从轴输入参数梯形图如下,已知光电到从轴切点的距离为 650mm,所以 S2+18 填入 K65000。S2+2、S2+10 以现场情况为准,

		ко
MOV	КО	D2020
		从轴轴号
		K5000
DMOV	K5000	D2022
		最小间距 (0.01mm)
		(O. O'IIIII)
		K4000
 MOV	K4000	D2024
		预存坐标起 始D寄存器
		知り付け品
		K20
MOV	K20	D2025
		预存长度
		ко
MOV	K0	D2026
3201	.10	预存当前指 针位置
		针位置
		КО
WOY	ΚV	
MOV	К0	D2027 取出当前指
		取出当前指 针位置
	DO 500	DO 500
	F0. 500	F0. 500
DMOVR	D102 丛轴脉冲当	D2028
	从抽脉冲自 量	从轴脉冲当 量(浮点数)
		K100000
DMOV	K100000	D2030
		从轴行程 (0.01mm)
		K100000
DMOV	K100000	D2032
		从轴最高频 率
		K65000
 DMOV	K65000	D2038
		取栈偏移量 (单位: 0.01mm)
		(半1年: 0.01mm)
	K2000	K2000
 DMOV	D106	D2040
	加速距离	加速距离(0.01mm)
		U. U1mm)
	K4000	K4000
DMOV	D108	D2042
23101	同步距离	同步距离 (0.01mm)
		(0. 01mm)
	K2000	K2000
 DMOV	D110	D2044
DMUV	减速距离	
		减速距离 (0.01mm)
	K2000	K2000
DMON		
DMOV	D112 换向距离	D2046 換向距离
	沃門範囲	换向距离 (0.01mm)
		*** * * * * * *
		K10000
DMOV	K10000	D2048
DMOV	K10000	
DMOV	K10000	D2048 返回距离 (0.01mm)
		D2048 返回距离 (0.01mm)
DMOV DMOV	K10000	D2048 返回距离 (0.01mm)

6.在接通指令前, 需将从轴回至原点, 并将 C251、D1648、S2+6、S2+7、S2+14, 梯形图如下

7.将 M2 置 ON 指令接通,从轴按照设定参数进行往复运动,并在色标传感器 X2 感应到信号时给 S3+0 置 ON,用于存入坐标,梯形图如下:

注意: 提高产品精度, 色标传感器信号 X2 感应时压入数据, 建议用输入中断的方法写

周期式凸轮运动【CAM】

1) 指令概述

对指定的轴进行周期位置控制、主轴匀速运动、从轴进行凸轮运动。

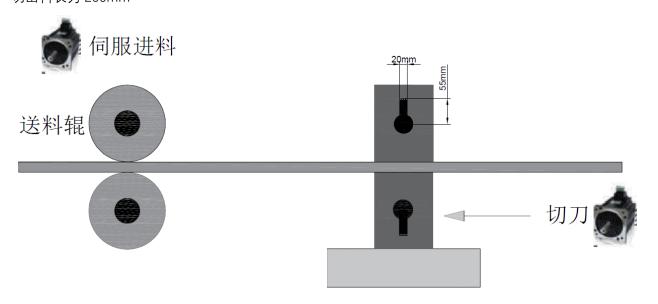
周期式凸轮运动【CAM】				
执行条件	常ON	适用机型	带 M 机种:JM、JEM、JHM、JH2M、JTM、 JSM、JHCM、JTCM、JT5M	
/	/	软件要求	2.6.050 及以上	

2) 操作数

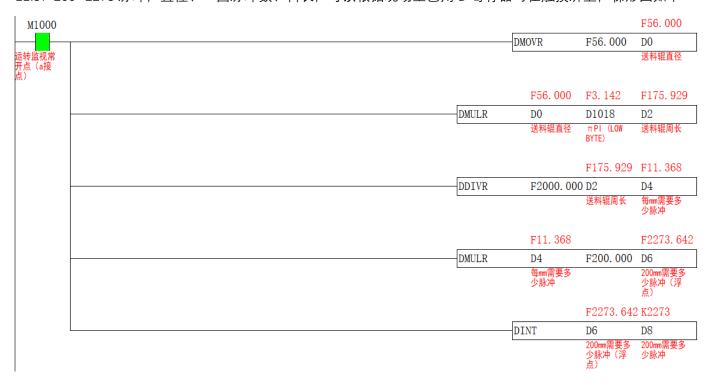
操作数	作用
\$1	指定主轴输入参数起始地址
S2	指定从轴输入参数起始地址
S3	指定输出状态位起始地址

3) 功能和动作

- S1 指定【主轴输入参数起始地址】。占用寄存器 S1~S1+9
- S2 指定【从轴输入参数起始地址】。占用寄存器 S2~S2+14
- S3 指定【输出状态位起始地址】。占用继电器 S3~S3+4
- ●在接通指令前, S3+4 需置 ON, 否则第一个周期从轴不动。需要让从轴回到原点, 例如从轴运动一圈为一个周期, 则原点需在"时钟 12 点"的位置, 正面朝上。回至原点后, 把从轴当前脉冲数(特殊 D 寄存器)与 S2+10 清零。
- ●当 M0 由 OFF 至 ON ,从轴轴组对主轴轴组进行周期式凸轮运动。主轴走完 S1+4 一周期脉冲数,从轴也跟随走完 S2+4 一周期脉冲数,其中同步脉冲数由 S2+6 决定,同步比例由 S2+2 决定,从轴同步起点=(S2+4-S2+6)/2。加速曲线与减速曲线由系统自动规划。当一周期完成后,S3+2 置 ON。
- ●注意:CAM 指令使能后,主轴轴组可以用脉冲指令让其动作,从轴按照设置参数进行周期式凸轮运动。
- ●注意: 改变一周期脉冲参数后,下周期生效,本周期不生效。

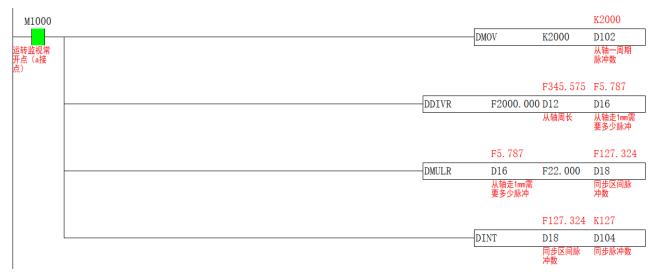

4) 相关参数

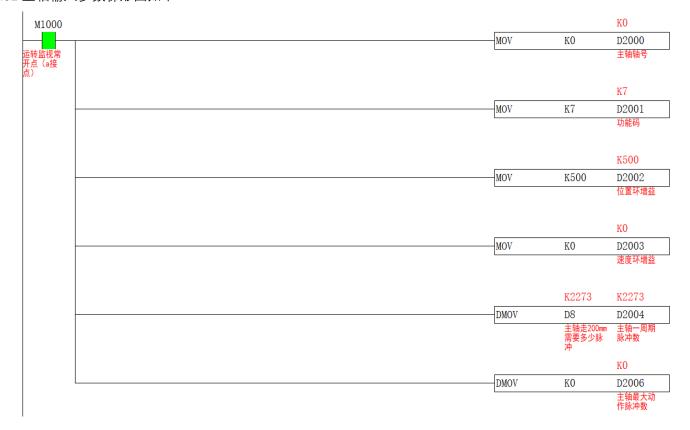
输入参数	参数名	数据类型	单位	备注			
\$1+0	主轴轴号	16 位	/	可参考 <u>轴号定义</u> 如主轴为脉冲,Y0 轴写 K0, Y2 轴写 K1, 依次类推 如主轴为编码器,写 K-1, 仅支持 X0,X1 通道。 注:首地址必须使用偶数,不得用奇数地址			
\$1+1	功能码	16 位	/	固定写 K7			
S1+2	位置环增益	16位	/	默认写 K500			
\$1+3	速度环增益	16位	/	默认写 KO			


\$1+4	主轴一周期脉冲数	32 位	脉冲数	行走一个产品长度所需要的脉冲数		
\$1+6	主轴最大脉冲数	32 位	脉冲数	默认写 KO		
\$1+8	主轴上周期脉冲(只读)	32 位	脉冲数	读取主轴上周期的脉冲数		
输入参数	参数名	数据类型	单位	备注		
\$2+0	从轴轴号	16位	/	与 \$1+0 同理 注: 首地址必须使用偶数,不得用奇数地址		
S2+1	从轴步骤(只读)	16 位	/	当前运行到哪个步骤		
S2+2	从轴同步比例	浮点数	/	主轴 1 个脉冲走多少 mm/从轴 1 个脉冲走多少 mm		
S2+4	从轴一周期脉冲数	32 位	脉冲数	从轴走一个产品所需要的脉冲数		
S2+6	从轴同步脉冲数	32 位	脉冲数	希望与主轴保持线速度一致的距离		
\$2+8	从轴最高频率	32 位	脉冲/秒	限制从轴的最高频率,防止参数设置不当飞车		
S2+10	主轴当前脉冲 位置	32 位	/	主轴当前脉冲映射地址,工作在零至一周期内		
\$2+12	从轴最大加速度	16 位	脉冲/ms	指每 ms 最高的频率增幅,当从轴当前位置与 S2+10 不匹配时启作用,与 S2+13,S2+14 配合使用,共同规划加减速曲线默认写 K0		
S2+13	从轴最低速度百分比	16位	/	当从轴当前位置与 S2+10 不匹配时启作用,默认写 K0		
S2+14	从轴最高速度百分比	16位	/	当从轴当前位置与 S2+10 不匹配时启作用,默认写 K0		
输入参数	参数名	数据类型	单位	备注		
\$3+0	同步信号输出	BOOT	/	从轴进入同步区时 ON,脱离同步区时 OFF		
\$3+1	从轴超速标志	BOOT	/	从轴速度超过 S2+8 时 ON		
\$3+2	主轴已工作一周期	BOOT	/	主轴完成一周期时 ON,由 PLC OFF		
\$3+3	同步状态	BOOT	/	从轴同步情况,为 ON 代表已同步上		
\$3+4	防切模式	воот	/	默认接通指令前需要置 ON, OFF 时判断从轴当前脉冲数是否为 0, 如果为 0, 那就等主轴走过一周期后切刀才动。ON 代表 S2+10 不为 0 时, 从轴可以在当前周期直接跑。		

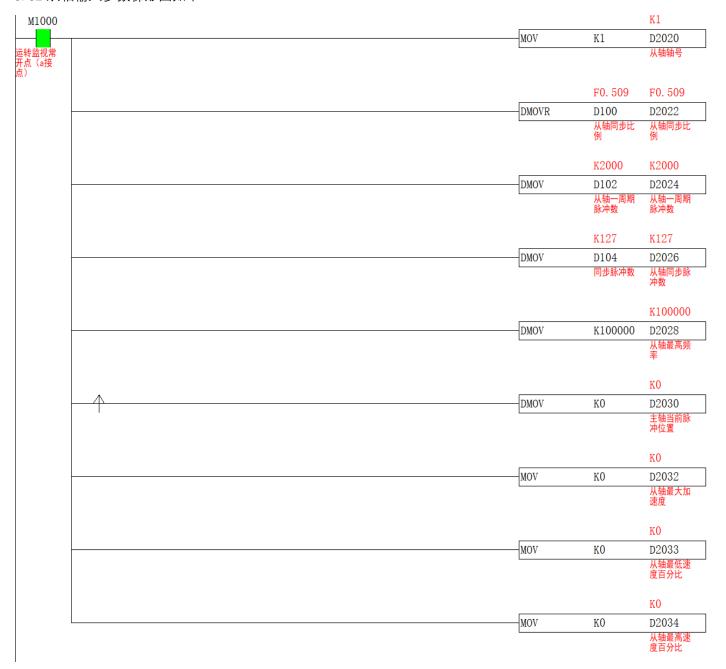
5) 举例

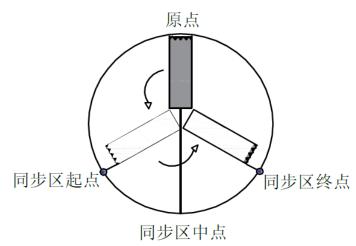
举例: 送料辊直径为 56mm,一圈脉冲数为 2000,由 PLC Y0,Y1 控制,切刀轴半径为 55mm,则直径为 110mm,刀的厚度为 20mm,一圈脉冲数为 2000,由 PLC Y2,Y3 控制,图中切刀轴已在原点,与料接触时要求线速度同步,切出料长为 200mm


1.算出送料轴走 1mm 需要多少脉冲,用于填入 S1+4,送料辊的直径为 56mm,周长为 $56*\pi≈175.84$,又因为一圈脉冲数为 2000,所以走 1mm 需要脉冲=2000/175.84≈11.37,要求切除料长为 200mm,则需要脉冲=11.37*200=2273 脉冲,直径、一圈脉冲数、料长,可以根据现场工艺用 D 寄存器写在触摸屏上,梯形图如下


2. 计算主轴每个脉冲走多少 mm 以及从轴每个脉冲走多少 mm, 用于计算参数 S2+2,主轴每个脉冲走多少 mm= 送料 辊 周 长 / 一圈 脉 冲 数 =0.0879, 从 轴 每 个 脉 冲 走 多 少 mm= 从 轴 周 长 / 一圈 脉 冲 数 =0.1727, 则 S2+2=0.0879/0.1727=0.509,如果参数计算不准确,会导致主从轴接触的区间不同步,从而造成扯料,或者堵料现象,如出现扯料现象,可结合现场情况适当减小此参数,反之增加,梯形图如下

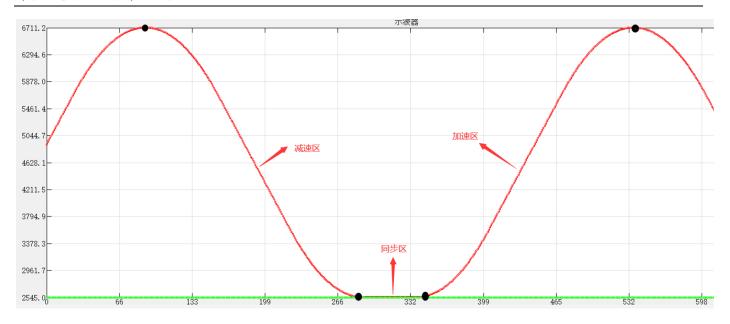
	F175. 929		F0. 088
DDIVR	D2 F2000. 000 D10		D10
	送料辊周长		主轴每个脉 冲走多少mm
		F3. 142	F345. 575
DMULR	F110.000	D1018	D12
		πΡΙ (LOW BYTE)	从轴周长
	F345. 575		F0. 173
DDIVR	D12	F2000.000	
	从轴周长		从轴每个脉 冲走多少mm
	F0. 088	F0. 173	F0. 509
DDIVR	D10	D14	D100
DDIVIC	主轴每个脉 冲走多少mm	从轴每个脉 冲走多少mm	从轴同步比
	DMULR DDIVR	DDIVR D2 送料辊周长 DMULR F110.000 F345.575 DDIVR D12 从轴周长	DDIVR D2 F2000.000 送料辊周长 F3.142 DMULR F110.000 D1018 πPI (LOW BYTE) F345.575 DDIVR D12 F2000.000 从轴周长 F0.088 F0.173


3.从轴转一圈,切一个料,所以从轴一周期脉冲数 S2+4=从轴一圈脉冲数, S2+6 同步脉冲数代表主轴与从轴接触的区间长度转换的脉冲数, 由图可知, 刀厚度为 20mm,则同步的区间长度为 20mm,同步脉冲个数=同步区间长度*从轴走 1mm 需要多少脉冲。但由于涉及到π,还有计算误差等问题,建议在计算同步脉冲数的时候,把同步区间加大 1-2mm,让从轴更早的进入同步区,防止扯料,梯形图如下


4.S1 主轴输入参数梯形图如下

5. S2 从轴输入参数梯形图如下

6.由于从轴的凸轮曲线同步区固定,所以在接通指令前需要让从轴在固定的原点位置,原点定在时钟的 12 点位置,则同步区的中点在时钟的 6 点位置,同步区的起点=同步区的中点-S2+6/2,同步区的终点=同步区的中点+S2+6/2,如下图所示,在回完原点后,还需把 D1648 、D1664、S2+10 清零,并把 S3+4 置 ON,S3+4 为 OFF 的情况下,从轴第一个周期将无动作,梯形图如下




```
K0
M1
                                                                                                                     DMOV
                                                                                                                                       K0
                                                                                                                                                    D1648
                                                                                                                                                    YO, Y1已发脉
冲数(LOW
WORD)
                                                                                                                     DMOV
                                                                                                                                       K0
                                                                                                                                                    D1664
                                                                                                                                                    Y2, Y3已发脉
冲数(LOW
WORD)
                                                                                                                                                    K0
                                                                                                                     DMOV
                                                                                                                                       K0
                                                                                                                                                    D2030
                                                                                                                                                    主轴当前脉
冲位置
                                                                                                                                   SET
                                                                                                                                                    M104
                                                                                                                                                    M1
```

7.从轴回完原点并把当前脉冲数清零后,接通 CAM 指令,从轴按照设置参数进行凸轮运动,完成一周期后 S3+2 输出,梯形图如下

```
K0
                                                                                                 K1
   M0
                                                                           CAM
                                                                                        D2000
                                                                                                 D2020
                                                                                                           M100
凸轮使能
                                                                                                          凸轮同步输
出
                                                                                        主轴轴号
                                                                                                 从轴轴号
                                                                                              SET
                                                                                                           M2
                                                                                        K5000
   M2
                                                                           DPLSV
                                                                                        D200
                                                                                                 Y0
                                                                                                           Y1
                                                                                        主轴频率
```

轴组运行的速度曲线如下

追切式凸轮运动【CAM】

1) 指令概述

与周期式凸轮不同,追切式凸轮无需设置主轴一周期长度,位置由传感器感应,可以剪切不同长度的产品。

追切式追剪【CAM】							
执行条件	常ON	适用机型	带 M 机种:JM、JEM、JHM、JH2M、JTM、 JSM、JHCM、JTCM、JT5M				
/	/	软件要求	2.6.050 及以上				

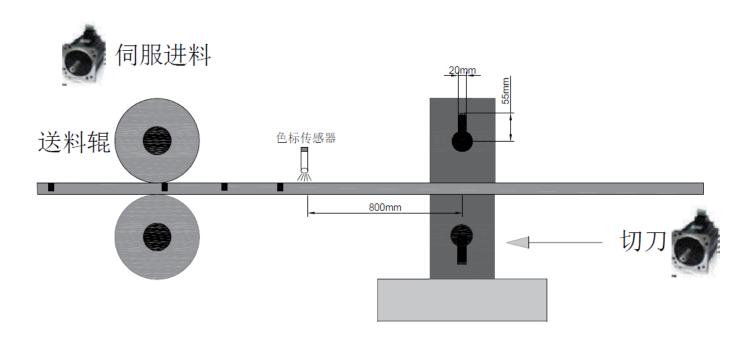
2) 操作数

操作数	作用
\$1	指定主轴输入参数起始地址
S2	指定从轴输入参数起始地址
\$3	指定输出状态位起始地址

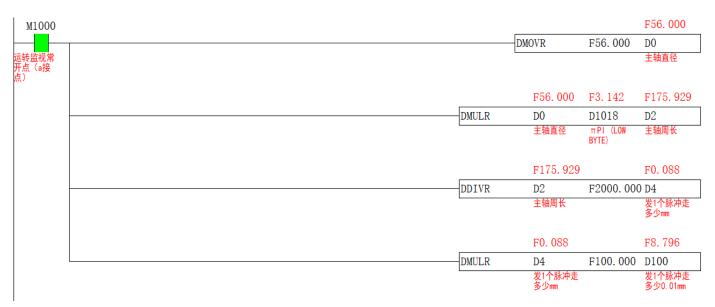
3) 功能和动作

- S1 指定【主轴输入参数起始地址】。占用寄存器 S1~S1+3
- S2 指定【从轴输入参数起始地址】。占用寄存器 S2~S2+24
- S3 指定【输出状态位起始地址】。占用继电器 S3~S3+4
- ●接通指令前,让主轴从轴回至原点,把从轴当前脉冲数(特殊寄存器)与 S2+22、S2+6、S2+7 清零。
- ●当 M0 由 OFF 至 ON ,从轴轴组对主轴轴组进行追切式凸轮运动。S3+0 置 ON 时,系统记录下主轴当前位置,进行堆栈,数据存入 S2+4 指定寄存器内,同时 S2+6 加 1,行走 S2+8 距离时,系统自动取栈,同时 S2+7 加 1,

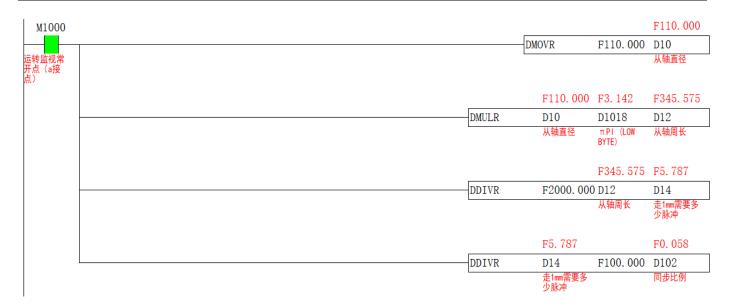
从轴开始进行凸轮动作。同步区起始位置由 S2+14 决定, 同步区长度由 S2+16 决定。

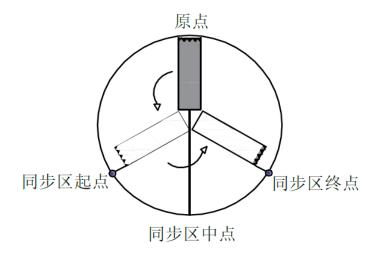

●注意: CAM 指令使能后, 主轴轴组可以用脉冲指令让其动作, 从轴按照设置参数进行往复运动。

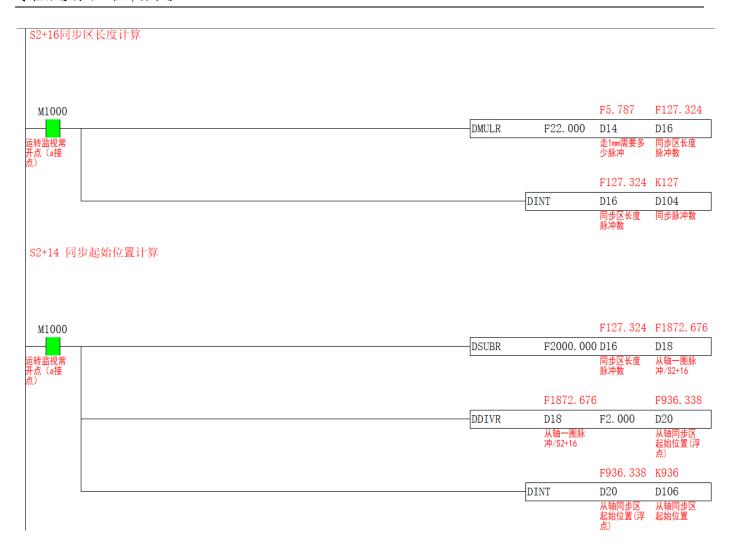
4) 相关参数


输入参数	参数名	数据类型	单位	备注
				可参考 <u>轴号定义</u>
S1+0	 	16 位	,	如主轴为脉冲, Y0 轴写 K0,Y2 轴写 K1,依次类推
31+0	主轴轴号	10 17	/	如主轴为编码器,写 K-1,仅支持 X0,X1 通道。
				注: 首地址必须使用偶数,不得用奇数地址
\$1+1	功能码	16位	/	固定写 K2
\$1+2	位置环增益	16 位	/	默认写 K500
\$1+3	速度环增益	16位	/	默认写 KO
输入参数	参数名	数据类型	单位	备注
S2+0		17/4	,	与 S1+0 同理
32+0	从轴轴号	16位	/	注: 首地址必须使用偶数,不得用奇数地址
S2+1	从轴步骤	16位 (只读)	/	当前运行到哪个步骤
S2+2	每个产品允许的最小间距	32 位	0.01mm	如果测出来的产品大小小于这个值则不入栈
S2+4	预存坐标起始 D 寄存器	16 位	/	存入数据的起始地址,写 K4000,则从 D4000 开始
S2+5	预存长度	16 位	/	如写 K10,则占用 20 个地址,起始地址由 S2+4 决定
S2+6	预存当前指针	16位 (只读)	/	监控当前存了几笔数据,
S2+7	取出当前指针	16位 (只读)	/	监控当前取出的几笔数据,从轴动作的时候 S2+7 自动加 1
S2+8	取栈偏移量	32 位	0.01mm	传感器与从轴之间的距离
S2+10	主轴比例	浮点数	/	计算主轴发一个脉冲走多少 0.01mm
S2+12	同步比例	浮点数	/	(从轴一圈脉冲数/从轴一圈距离)/100 (0.01mm)
S2+14	从轴同步起始位置	32 位	/	从轴同步区的起始位置,如原点朝上[(\$2+18)-(\$2+16)]/2
S2+16	从轴同步长度	32 位	脉冲数	从轴同步脉冲数,实时修改下周期生效
S2+18	从轴一圈脉冲数	32 位	/	一般为从轴转一圈所需的脉冲数
S2+20	从轴最高频率	32 位	脉冲/秒	限制从轴的最高频率,防止参数设置不当飞车
S2+22	主轴当前脉冲位置	32 位	/	主轴当前脉冲映射地址,工作在零至一周期内
S2+24	指定的压入数据	32 位	脉冲数	指定压入的数据长度,配合 M+4 使用
输入参数	参数名	数据类型	单位	备注
\$3+0	坐标存入	BOOT	/	为 ON 存入一个坐标,由系统 OFF
S3+1	同步信号输出	BOOT	/	从轴进入同步区时 ON,脱离同步区时 OFF
\$3+2	从轴超速标志	BOOT	/	从轴速度超过 S2+20 时 ON
\$3+3	主轴已工作一周期	BOOT	/	主轴完成一周期时 ON,由 PLC 控制 OFF
\$3+4	工作描录	ROOT	,	ON 表示压入的数据从 S2+24 指定的数据压入,为 OFF 表
33+4	工作模式	BOOT	/	示数据由传感器控制压入。

5) 举例

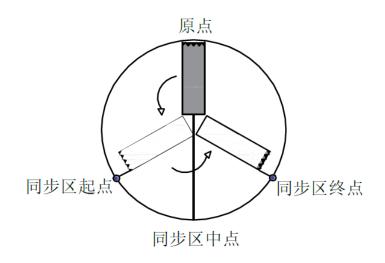

举例: 送料辊直径为 56mm, 一圈脉冲数为 2000, 由 PLC Y0,Y1 控制, 切刀轴半径为 55mm, 则直径为 110mm, 刀的厚度为 20mm, 一圈脉冲数为 2000, 由 PLC Y2,Y3 控制, 图中切刀轴已在原点, 与料接触时要求线速度同步, 要求切刀切在料上的黑点位置, 物料的坐标由色标传感器感应, 接入 PLC 输入端的 X0, 距离切刀轴中心点位置 800mm

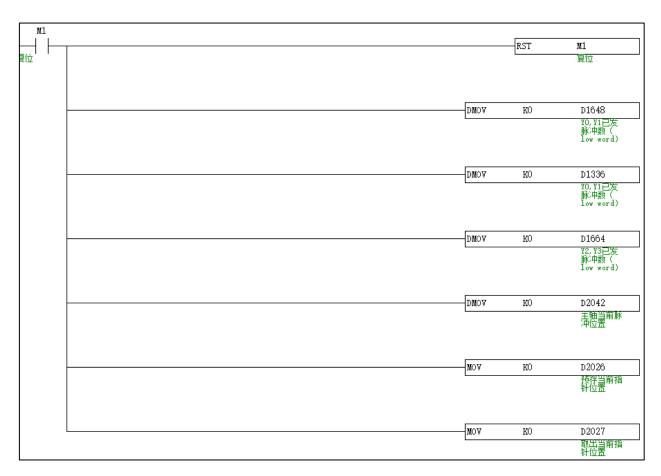

1.计算 S2+10 主轴比例,算出主轴走 0.01mm 需要多少脉冲,已知送料棍直径为 56mm,一圈脉冲数为 2000,周长= $56*\pi=175.84$,则主轴发 1 个脉冲走 175.84/2000=0.08792(mm),则发 1 个脉冲走 8.792(0.01mm)梯形图如下



2.计算 S2+12 同步比例,已知切刀轴直径为 110mm,一圈脉冲数为 2000,则切刀轴周长为 110*3.14=345.4,则 S2+12=(2000/345.4)/100=0.058,梯形图如下

3. 确定 S2+14 从轴同步区起始位置及 S2+16 从轴同步长度,因为刀厚度为 20mm,则同步的区间长度为 20mm,同步脉冲个数=同步区间长度*从轴走 1mm 需要多少脉冲。但由于涉及到π,还有计算误差等问题,建议在计算同步脉冲数的时候,把同步区间加大 1-2mm,让从轴更早的进入同步区,防止扯料,假设原点在下图中切刀朝上的位置,则 S2+14=(一圈脉冲数 – S2+16)/2,梯形图如下


4.S1 主轴输入参数梯形图如下



5.S2 从轴输入参数梯形图如下,因为光标到切刀中点的距离为 800mm,则 S2+8 取栈偏移量填 80000,又因为切刀轴 2000 个脉冲转一圈,从轴转一圈代表切一个料,所以 S2+18 填入 2000.梯形图如下

M1000				K1
W1000		MOV	K1	D2020
运转监视常 开点(a接 点)				从轴轴号
				K1000
		DMOV	K1000	D2022
				最小间距 (0.01mm)
				K4000
		MOV	K4000	D2024
				预存坐标起 始D寄存器
				K20
		MOV	K20	D2025 预存长度
	\wedge	wow	110	K0
		MOV	КО	D2026 预存当前指 针位置
	\wedge	MOV	VO.	K0
		MOV	КО	D2027 取出当前指 针位置
				针位置 K80000
		DMOV	K80000	D2028
		23		取栈偏移量
			F8. 796	F8. 796
		DMOVR	D100 发1个脉冲走	D2030 主轴比例
			发1个脉冲走 多少0.01mm	
		DMOVR	F0. 058 D102	F0. 058 D2032
		DMOVK	同步比例	同步比例
			K1147803	04/2114780304
		DMOV	D106	D2034
			从轴同步区 起始位置	从轴同步起 始位置
			K127	K127
		DMOV	D104 同步脉冲数	D2036 从轴同步长 度
		DVOV	*******	K2000
		DMOV	K2000	D2038 从轴一周期 脉冲数
				K100000
		DMOV	K100000	D2040 从轴最高频 率
	\wedge			КО
	T'	DMOV	КО	D2042 主轴当前脉 冲位置
				КО
		DMOV	КО	D2044
				指定的压入 数据

6.假设原点定在时钟的 12 点位置,则同步区的中点在时钟的 6 点位置,同步区的起点=同步区的中点-S2+6/2,同步区的终点=同步区的中点+S2+6/2,如下图所示,在回完原点后,还需把 D1648 、D1336、D1664、S2+6,S2+7 清零,梯形图如下

7.从轴回完原点并把当前脉冲数清零后,接通 CAM 指令,色标传感器有信号时,将 S3+0 置 ON,则代表填入坐标位置,此坐标行走 S2+8 时取出,则从轴切点正好切在标上,梯形图如下:

注意: 提高产品精度, 色标传感器信号 X2 感应时压入数据, 建议用输入中断的方法写

周期式同步运动【CAMSYNC】

1) 指令概述

对指定的轴进行周期位置控制

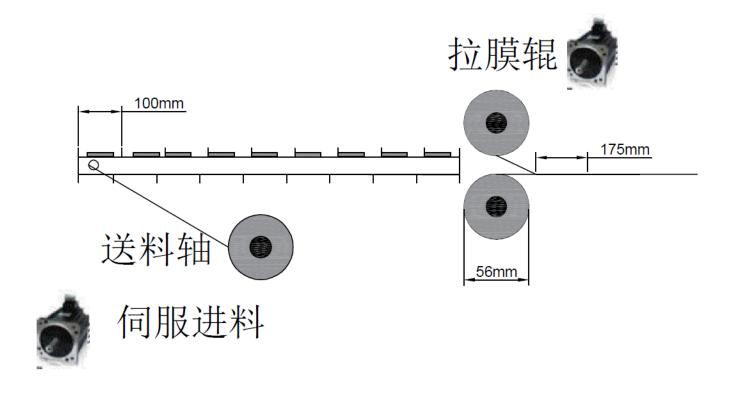
周期式同步运动【CAMSYNC】								
执行条件	常ON	适用机型	带 M 机种:JM、JEM、JHM、JH2M、JTM、 JSM、JHCM、JTCM、JT5M					
/	/	软件要求	2.6.050 及以上					

2) 操作数

操作数	作用
\$1	指定主轴输入参数起始地址
S2	指定从轴输入参数起始地址
S3	指定输出状态位起始地址

3) 功能和动作

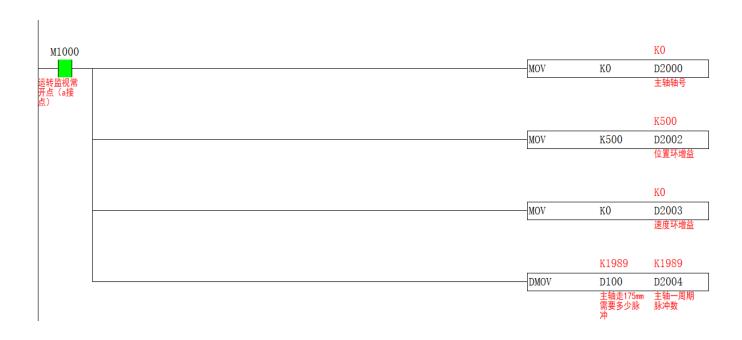
- S1 指定【主轴输入参数起始地址】。占用寄存器 S1~S1+5
- S2 指定【从轴输入参数起始地址】。占用寄存器 S2~S2+12
- S3 指定【输出状态位起始地址】。占用继电器 S3~S3+5
- ●在接通指令前,需把 M+4 置 ON,否则从轴不跟随主轴运动。根据现场需求决定是否把 M+5 置 ON,为 ON 代表由底层自动规划加减速曲线(S2+10,S2+11,S2+11 都可以设置成 0),为 OFF 代表以 S2+10, S2+11, S2+12 这三个参数来规划加减速曲线。然后按照现场工艺让主从轴回至原点,然后把当前脉冲数(特殊 D 寄存器)与 S2+6 清零。
- ●当 M0 由 OFF 至 ON ,从轴轴组对主轴轴组进行周期式同步运动。主轴走完 S1+4 一周期脉冲数,从轴也跟随走完 S2+2 一周期脉冲数,在运动过程中,S3+4 OFF,从轴跑完当前周期就停止动作,直到 S3+4 置 ON 的下周期恢复同步,恢复同步所需的脉冲数由 S2+8 决定,其中不改变主从轴之间的相位。当完成一周期后,S3+0 置 ON。
- ●注意: CAMSYNC 指令使能后, 主轴轴组可以用脉冲指令让其动作, 从轴按照设置参数进行周期式凸轮运动。
- ●注意:改变一周期脉冲参数后,下周期生效,本周期不生效。

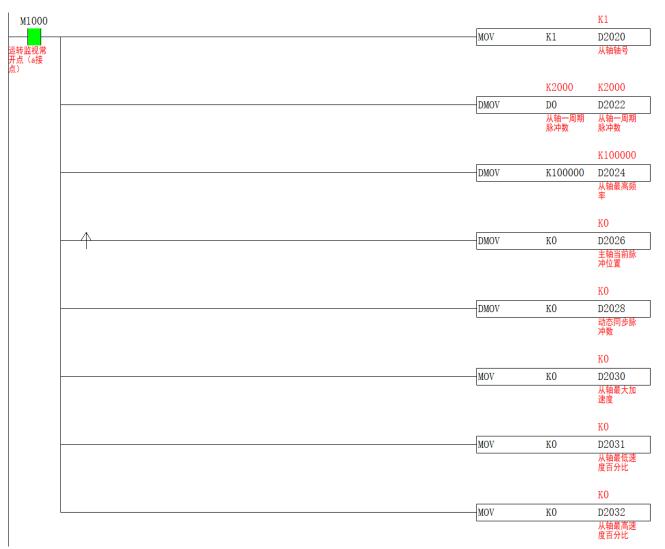

4) 相关参数

输入参数	参数名	数据类型	单位	备注
\$1+0	主轴轴号	16 位	/	可参考 <u>轴号定义</u> 如主轴为脉冲,Y0 轴写 K0, Y2 轴写 K1, 依次类推 如主轴为编码器,写 K-1, 仅支持 X0,X1 通道。 注:首地址必须使用偶数,不得用奇数地址
\$1+1	预留	16位	/	/
\$1+2	位置环增益	16位	/	默认写 K500
\$1+3	速度环增益	16位	/	默认写 KO
S1+4	主轴一周期脉冲数	32 位	脉冲数	主轴跑一周期的脉冲数
输入参数	参数名	数据类型	单位	备注
S2+0	从轴轴号	16位	/	与 S1+0 同理 注: 首地址必须使用偶数,不得用奇数地址
S2+1	从轴步骤 (只读)	16位	/	当前运行到哪个步骤
\$2+2	从轴一周期脉冲数	32 位	脉冲数	从轴跑一周期的脉冲数

S2+4	从轴最高频率	32 位	脉冲/秒	限制从轴的最高频率,防止参数设置不当飞车
S2+6	主轴当前脉冲 位置	32 位	/	主轴当前脉冲映射地址,工作在零至一周期内
S2+8	动态同步脉冲数	32 位	/	动态上下同步所需脉冲数,这个脉冲数说的是主轴的脉冲数,如写 0,从轴就会马上与主轴同步,如写 K1000,就会有 1000 个脉冲缓冲。
\$2+10	从轴最大加速度	16 位	脉冲/ms	指每 ms 最高的频率增幅,当从轴当前位置与 S2+6 不匹配时启作用,与 S2+11,S2+12 配合使用,共同规划加减速曲线默认写 K0
S2+11	从轴最低速度百分比	16位	/	当从轴当前位置与 S2+6 不匹配时启作用,默认写 KO
S2+12	从轴最高速度百分比	16位	/	当从轴当前位置与 S2+6 不匹配时启作用,默认写 KO
输入参数	参数名	数据类型	单位	备注
S3+0	主轴已工作一周期	BOOT	/	主轴完成一周期时 ON,由 PLC OFF
S3+1	从轴超速标志	BOOT	/	从轴速度超过 S2+4 时 ON
\$3+2	周期生效模式	воот	/	默认 OFF,为 ON 代表一周期脉冲数修改实时生效,为 OFF 代表一周期脉冲数修改下周期生效
\$3+3	模式状态	воот	/	主轴工作在模式状态,主轴当前脉冲数从 0 到一周期脉冲 数循环
\$3+4	同步使能	воот	/	默认接通指令前 ON,在运动过程中 OFF。从轴跑完当前周期就停止,直到置 ON 的下周起恢复同步,与 S2+8 配合使用
\$3+5	静态上同步加减速处理	воот	/	为 ON 代表由底层自动规划加减速曲线 (\$2+10,\$2+11,\$2+11 都可以设置成 0),为 OFF 代表以 \$2+10,\$2+11,\$2+12 这三个参数来规划加减速曲线。

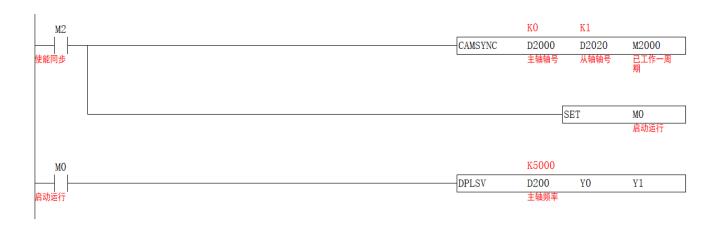
5) 举例


举例: 送料轴由伺服控制,接入 PLC 输出端 Y2,Y3,一圈脉冲数为 2000。印刷轴由伺服控制,接入 PLC 输出端 Y0,Y1,直径为 56mm,一圈脉冲数为 2000。已知进料伺服转一圈,送料轴走 100mm,正好一格,每包的膜长为 175mm,希望送料轴走 100mm,拉膜轴走 175mm,这样每包膜里就有一个物料。其中拉膜为主轴,送料为从轴如下图



1.已知进料伺服转一圈,送料轴走 100mm,正好一格,又因为送料伺服转一圈需要 2000 个脉冲,所以 S2+2 从轴一周期脉冲数填 2000。已知拉膜轴的直径为 56mm,则周长为 56*π=175.84mm,又因为一圈脉冲数为 2000,则 走 1mm 需要脉冲数=2000/175.84=11.37,则走 175mm 为 175*11.37=1989(脉冲),则 S1+4 写入 K1990。直径、一圈脉冲数、料长,可以根据现场工艺用 D 寄存器写在触摸屏上梯形图如下

2. S1 主轴输入参数梯形图如下



3.接通 CAMSYNC 之前, 需将 D1648,D1664,S2+6 清零, 还需将 S3+4 置 ON, 不置 ON 则从轴不动作, S3+5 置 ON, 梯形图如下

4.回完原点,将当前脉冲数清零后,将 M2 置 ON,接通 CAMSYNC 指令,主从轴按照设置参数进行周期同步运动,

完成一周期后 S3+0 置 ON, 梯形图如下

自定义凸轮曲线【CAM】

1) 指令概述

通过自定义电子凸轮曲线的运动,可以实现实时运动控制

周期式同步运动	周期式同步运动【CAM】							
执行条件	常ON	适用机型	带 M 机种:JM、JEM、JHM、JH2M、JTM、 JSM、JHCM、JTCM、JT5M					
/	/	软件要求	2.6.050 及以上					

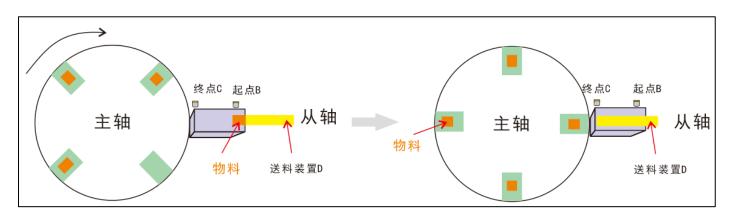
2) 操作数

操作数	作用
\$1	指定主轴输入参数起始地址
S2	指定从轴输入参数起始地址
S3	指定输出状态位起始地址

3) 功能和动作

- S1 指定【主轴输入参数起始地址】。占用寄存器 S1~S1+7
- S2 指定【从轴输入参数起始地址】。占用寄存器 S2~S2+13
- S3 指定【输出状态位起始地址】。占用继电器 S3~S3+3

4) 相关参数


输入参数	参数名	数据类型	单位	备注	
\$1+0	主轴轴号	16 位整数	/	可参考 <u>轴号定义</u> 如主轴为脉冲,Y0 轴写 K0, Y2 轴写 K1, 依次类推 如主轴为编码器,写 K-1, 仅支持 X0,X1 通道。 注: 首地址必须使用偶数,不得用奇数地址	
\$1+1	功能码	16 位整数	/	固定写 K9	
\$1+2	位置环增益	16 位整数	/	默认写 K500	
\$1+3	速度环增益	16 位整数	/	默认写 KO	
\$1+4	主轴一周期脉冲数	32 位整数	脉冲数	行走一个周期所需要的脉冲数	
S1+6	主轴凸轮表最大值	32 位整数	虚拟单位	可用一周期最大 360 度为单位,也可以用一周期最大距离为单位,或者脉冲为单位均可	
输入参数	参数名	数据类型	单位	备注	
S2+0	从轴轴号	16 位整数	/	与 S1+0 同理 注: 首地址必须使用偶数,不得用奇数地址	
S2+1	从轴步骤 (只读)	16 位整数	/	当前运行到哪个步骤	
S2+2	从轴一周期脉冲数	32 位整数	脉冲数	从轴跑一周期的脉冲数	
S2+4	从轴凸轮表最大值	32 位整数	虚拟单位	可用一周期最大 360 度为单位,也可以用一周期最大员为单位,或者脉冲为单位均可	
S2+6	从轴自定义凸轮点数	16 位整数	/	例: 3 个点写 K3	

		16 位整数			若赋值 K3000,则凸轮表起始地址为 D3000 开始。一个 凸轮点数占用 6 个 D,占用点数由 S2+6 决定。					
					举例如下,若凸轮点数为3,则占用 D3000~D3015:					
					点数	主轴位置 (32 位浮点数)	从轴位置 (32 位浮点数)	速度 (32 位浮点数)		
S2+7	从轴自定义凸轮起始地址		/		1	D3000	D3002	D3004 固定写 F0		
					2	D3006	D3008	D3010 固定写 F0		
					3	D3012	D3014	D3016 固定写 F0		
\$2+8	 从轴最高频率	32 位整数	/							
S2+10	主轴当前脉冲位置	32 位整数	脉冲数		主轴当前脉冲映射地址,工作在零至一周期内,映射 S1+4 行走的当前值					
S2+12	主轴凸轮表当前位置	32 位整数	虚拟单位		映射 \$1+	+6 行走的当前值				
输入参数	参数名	数据类型	单位		备注					
\$3+0	主轴已工作一周期	BOOT	/	T	主轴完成一周期时 ON,由 PLC OFF					
\$3+1	从轴超速标志	BOOT	/		从轴速度超过 S2+8 时 ON					
\$3+2	模式状态	воот	/		为 ON 则: 主轴工作在模式状态,主轴当前脉冲数从 0 到 一周期脉冲数循环 为 OFF: 主轴当前脉冲数从 0 一直累加					
\$3+3	为 OFF 代表从轴单向, 为 ON 代表从轴双向	воот	/		从轴同步情况,为 ON 代表已同步上					

5) 举例

如图,从轴(Y2,Y3)需要往主轴(Y0,Y1)转盘中每个工位的料槽中依次送料,用自定义凸轮实现。

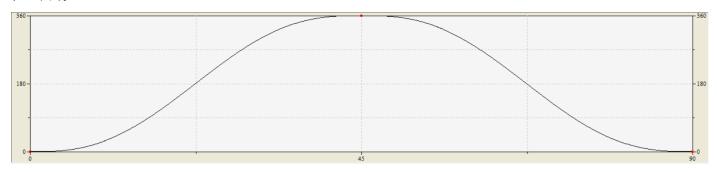
- 1、4个工位分别间隔90度。
- 2、当从轴推杠装置 D 从 B 点运动到 C 点时,则物料掉落送入到主轴料槽中。
- 3、主轴转一圈 3600 个脉冲。从轴 BC 两点间是 900 个脉冲。

分析:

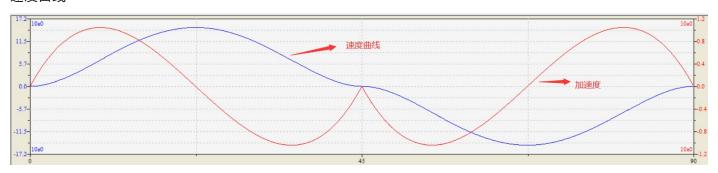
- 1、工位4个,每个工位间的角度为90度,因此以1个工位为周期。则主轴一周期脉冲数为3600/4=900个。主轴凸轮表最大值为90(此处按角度来定义单位)。
- 2、从轴从 B 点→C 点→B 点为一个周期。因此从轴一个周期脉冲数为 900*2=1800 个,从轴凸轮表最大值为

360 (此处按角度来定义单位)。

- 3、从轴做往返运动,需要将 S3+3 置 ON。
- 4、定义凸轮点坐标,需要定义 3 个凸轮点,假设 S2+7 的值为 K3000,则凸轮点占用 D3000~D3017,具体表格如下:


注意:凸轮点的主从轴位置的单位要与凸轮表最大值单位保持一致。

如:若凸轮表最大值(S1+6、S2+4)单位以角度来定义,则凸轮点的主轴位置也需要以角度定义,角度不一定以360度为一个周期,根据现场实际使用环境。


若主轴凸轮表最大值单位以脉冲来定义,则凸轮点的主轴位置也需要以脉冲定义。

点数	主轴位置(32 位浮点数)	从轴位置(32 位浮点数)	速度(32 位浮点数)
起始点	D3000: F0	D3002: F0	D3004: F0
中间点	D3006: F45	D3008: F360	D3010: F0
结束点	D3012: F90	D3014: F0	D3016: F0

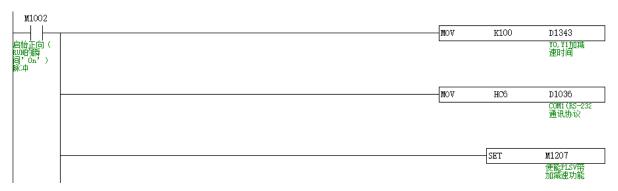
位置曲线

速度曲线

编程如下:

bFinal

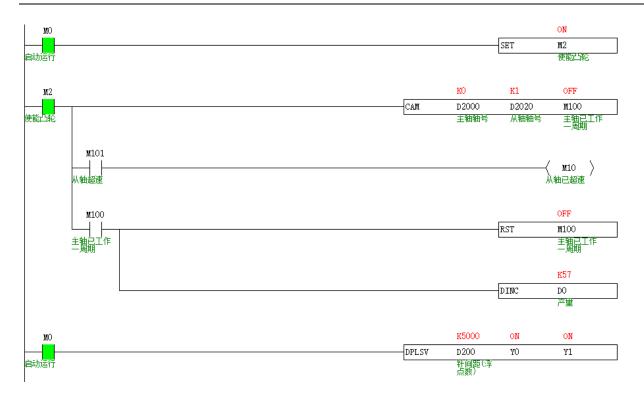
计算凸轮点, C 函数如下:


函数断开的瞬间 ON 一个周期,也可理解为下降沿,常用于结束动作。

```
if(bEn)//如果指令导通
   {
        //在此添加指令导通时的程序执行代码
        //点 1
        SET_FD(3000,0);
        SET_FD(3002,0);
        SET_FD(3004,0.0f);
        //点 2
        SET_FD(3006,45.0f);
        SET_FD(3008,360.f);
        SET_FD(3010,0.0f);
        //点3
        SET_FD(3012,90.0f);
        SET_FD(3014,0.0f);
        SET_FD(3016,0.0f);
   }
}
```

梯形图编程如下:

参数初始化:


建议用波特率 115200 通讯, 方便用虚拟示波器监控波形:

主轴参数初始化

构建主程序框架

叠加运动【CAMADD】

1) 指令概述

对指定的轴组进行叠加运动控制(目前只支持对 FOLLOW 指令的从轴进行叠加)

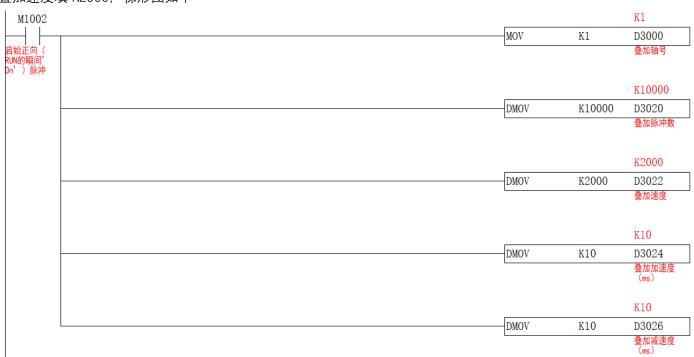
叠加运动【CAMADD】						
执行条件	常 ON	适用机型	带 M 机种:JM、JEM、JHM、JH2M、JTM、 JSM、JHCM、JTCM、JT5M			
/	/	软件要求	2.6.050 及以上			

2) 操作数

操作数	作用
\$1	指定轴号
S2	指定输入参数
S3	指定输出状态标志

3) 功能和动作

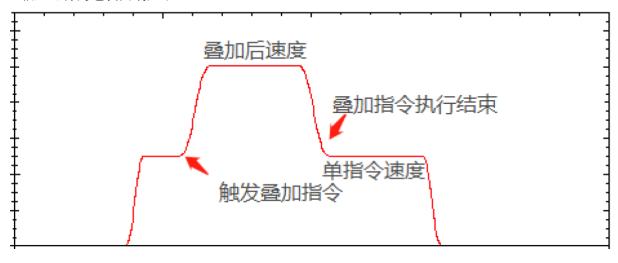
- S1 指定【叠加轴号】。选定叠加轴号
- S2 指定【指定输入参数】。占用寄存器 S2-S2+7
- S3 指定【指定输出标志位】。占用继电器 S3
- ●注意:本指令暂时只支持 FOLLOW 指令指定的从轴进行叠加运动。在 FOLLOW 指令接通后生效。
- ●当 MO 置 ON 后,对指定轴号 S1 进行运动叠加,叠加脉冲数由 S2+0 决定,叠加速度由 S2+2 决定,叠加加速度由 S2+4 决定,叠加减速度由 S2+6 决定。叠加完成后 S3+0 置 ON。

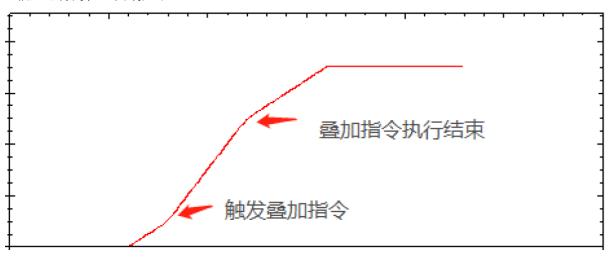

4) 相关参数

输入参数	参数名	数据类型	单位	备注
\$1+0	指定叠加轴号	16 位	/	可参考 <u>轴号定义</u> YO 轴写 KO, Y2 轴写 K1, 依次类推
				注:首地址必须使用偶数,不得用奇数地址
S2+0	叠加脉冲数	32 位	/	需要叠加的脉冲数
				注:首地址必须使用偶数,不得用奇数地址
\$2+2	叠加速度	32 位	脉冲/秒	每秒叠加的速度
S2+4	叠加加速度	32 位	脉冲/ms	希望以每 ms 多少脉冲的速度到达 S2+2
S2+6	叠加减速度	32 位	脉冲 /ms	希望以每 ms 多少脉冲的速度到达叠加前的速度
\$3+0	叠加完成标志	BOOT	/	叠加完成后置 ON

5) 举例

举例: 要求在 FOLLOW 指令运行时, 让从轴以每秒 2000 个脉冲的频率叠加 10000 个脉冲。


1.CAMADD 叠加运动目前只支持 FOLLOW 的从轴使用,所以 S1 叠加轴号写 K1, S2+0 叠加脉冲数填 K10000,S2+2 叠加速度填 K2000,梯形图如下


2.先接通 FOLLOW 指令,让从轴主轴动作,在将 CAMADD 指令接通,从轴将进行叠加运动,梯形图如下

3.轴组运行的速度曲线如下

4.轴组运行的位置曲线如下

