

10.1 inch TFT Display Series

GDTL101JL-S06

Dalian Good Display Co., Ltd.

PRODUCT SPECIFICATION

□Tentative Specification☑Preliminary Specification□Specification Approval

MODEL NAME : GDTL101JL-S06 Version : A1

Customer: Common	
APPROVED BY	SIGNATURE
Name / Title	
Note:	
Please return 1 copy for your co signature and comments.	nfirmation with your

Approved By	Checked By	Prepared By
宝刘印玉	之温印馨	之刘即昭

CONTENTS

REVISION HISTORY	3
1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 FEATURES	4
1.3 APPLICATION	4
1.4 GENERAL SPECIFICATIONS	4
1.5 MECHANICAL SPECIFICATIONS	4
2. MECHANICAL CHARACTERISTICS	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	7
4. ELECTRICAL CHARACTERISTICS	7
4.1 TFT LCD MODULE	7
4.2 TTL mode AC electrical characterisitcs	7
4.3 LVDS mode DC electrical characterisitcs	8
4.4 LVDS mode AC electrical characterisitcs	8
4.5 Backlight Specification	9
5. INTERFACE PIN ASIGNMENT	10
6. INTERFACE TIMING	12
7. OPTICAL CHARACTERISTICS	16
8. RELIABILITY TEST CRITERIA	20
9. DEFINITION OF LABELS.	21
11. PRECAUTIONS	23
12. SAFETY PRECAUTIONS	23

PRODUCT SPECIFICATION REVISION HISTORY

Version	Date	Description
1.0	2021.03.16	First release
1.1	2021.05.18	Update drawing
		Corrected luminance value is 600cd/m2
1.2	2022.10.25	A conductive cloth is added to the steel sheet of the FPC

1. GENERAL DESCRIPTION

1.1 OVERVIEW

GDTL101JL-S06 is a 10.1" TFT Liquid Crystal Display module with LED backlight unit and 40-pin-and LVDS interface. This product supports 1024 x 600 WSVA format and can display true 16.7M colors (6-bits colors with FRC).

1.2 FEATURES

- Excellent brightness (600 nits)
- WSVGA (1024 x 600 pixels) resolution
- LVDS (Low Voltage Differential Signaling) interface
- Wide operation and storage temperature range
- "RoHS" compliance

1.3 APPLICATION

- -TFT LCD monitor for Industrial applications
- -Slim design display for portable applications
- -Digitizer Applicable Design

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	222.72(W) × 125.28(H) (10.1" diagonal)	mm	
LCM Outline dimension	235(W) ×143(H) ×5.0(D)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Resolution	1024 x R.G.B. x 600	pixel	-
Pixel Pitch (HxV)	0.2175(H) x 0.2088(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7 M	color	-
Display Operation Mode	Normally White	-	-
Surface Treatment	Anti Glare	-	-
Recommended Viewing Direction	12	O' Clock	-

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

1.5 MECHANICAL SPECIFICATIONS

lte	em	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	234.7	235.0	235.3	mm	
Madula Siza	Vertical (V)	142.7	143.0	143.3	mm	(1)
Module Size	Depth (D)	4.8	5.0	5.2	mm	-

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Measurement should be done by pressing down the PCBA.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

	_	Value		Linit	Nata
Item	Symbol	Min.	Max.		Note
Operating Ambient Temperature	T _{OP}	-20	+70	°C	
Storage Temperature	T _{ST}	-30	+80	°C	

Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta < 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Sumbol	Val	ue	Linit	Nete	
	Symbol	Min.	Max.	Unit	Note	
Power Supply Voltage	VDD	-0.3	3.6	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

					Ta = 25	±2 ℃
			Value			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage 1	V _{dd}	3.0	3.3	3.6	V	(1)
Power Supply Voltage 2	AVDD	-	10.6	-	V	
Power Supply Voltage 3	VGH	-	25	-	V	
Power Supply Voltage 4	VGL	-	-7	-	V	
Power Supply Voltage 5	VCOM	-	-4.3	-	V	
Logic High Input Voltage	VIH	0.7VDD		VDD	V	
Logic Low Input Voltage	VIL	GND		0.3VDD	V	
Logic High Output Voltage	VOH	VDD-0.4		VDD	V	
Logic Low Output Voltage	VOL	GND		GND+0.4	V	
LVDS terminating resistor	RT	-	100	-	ohm	

Note (1)The assembly should be always operated within above ranges.

Note (2) Typ. VCOM is only a reference value, it must beoptimized according to each LCM.

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 °C, fv = 60 Hz, whereas a power dissipation check pattern below is displayed.

3.2 TTL mode AC electrical characterisitcs

Baramotor	Symbol		Spec.		Unit	Condition
Falallelel	Symbol	Min.	Тур.	Max.	Unit	Condition
VDD Power On Slew rate	TPOR	1-1	-	20	ms	From 0V to 90% VDD
RESET pulse width	T _{Rst}	50	-	-	μs	DCLK=65MHz
DCLK cycle time	T _{cph}	14	1	-	ns	
DCLK pulse duty	T _{cwh}	40	50	60	%	\wedge (γ)
VSD setup time	T _{vst}	5	-	-	ns	~~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
VSD hold time	T _{vhd}	5	-	-	ns	
HSD setup time	T _{hst}	5	1	-	ns	~~~~
HSD hold time	T _{hhd}	5	1	-	ns	-
Data set-up time	T _{dsu}	5		-	ns	D0[7:0], D1[7:0], D2[7:0] to DCLK
Data hold time	T _{dhd}	5	-	- /	ns	D0[7:0], D1[7:0], D2[7:0] to DCLK
DE setup time	T _{esu}	5	1	-	ns	
DE hold time	Tehd	5	-		ns	01-
					9	10% to 90% target voltage.
Output stable time	T _{sst}	-	-	120/1	μs	CL=90pF, R=10K ohm (Cascade)
			1	3		Dual gate

PRODUCT SPECIFICATION

3.3 LVDS mode DC electrical characterisitcs

Baramotor	Symbol		Spec.		Unit	Condition
Farameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Differential input high Threshold voltage	R _{XVTH}	-	-	+0.1	V	Brauer=1.2V
Differential input low threshold voltage	R _{XVTL}	-0.1	-	-	V	TXVCM-T.2V
Input voltage range (singled-end)	R _{XVIN}	0	-	VDD-1.2+ V _{ID} /2	V	-
Differential input common Mode voltage	R _{XVCM}	V _{ID} /2	-	VDD-1.2	V	
Differential input voltage		0.2	-	0.6	V	
Differential input leakage Current	RV _{Xliz}	-10		+10	μA	-
LVDS Digital Operating Current	Iddlvds	-	15	30	mA	Fclk=65MHz, VDD=3.3V
LVDS Digital Stand-by Current	Istlvds	-	10	50	μA	Clock & all Functions are stopped

Single-end signals

3.4 LVDS mode AC electrical characterisitcs

Paramotor	Symbol		Spec.		Unit	Condition	
Falameter	Symbol	Min.	Тур.	Max.	Unit		
Clock frequency	RXFCLK	20	$\overline{(-0)}$	71	MHz	-	
Input data skew margin	TRSKM	500	J.		pS	V _{ID} =400mV R _{XVCM} =1.2V R _{XFCLK} =71MHz	
Clock high time	TLVCH	E	4/(7* R _{XFCLK})	-	ns	H	
Clock low time	TLVCL		3/(7* R _{XFCLK})	-	ns	-	
PLL wake-up time	TemPLL	19	-	150	μs		

🗗 GooDisplay

PRODUCT SPECIFICATION

3.5 Backlight Specification

Item of backlight characteristics	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	Vf	16.2	18	20.4	V	lf=140mA;Ta=25 ℃
Number of LED	-		42		Piece	
Connection mode	S&P	7series×6paraller			-	
Life Time (50%)		30000	100000		hrs	Note 1

Ta = 25 ± 2 °C

Using condition: constant current driving method If=140mA(+/-10%).

Note 1 : The "Life Time" is defined as the time period when the brightness decrease to 50% of the initial value under continuous lighting at 25℃ (dry condition) with the recommended driving current.

4. INTERFACE PIN ASIGNMENT

4.1 TFT LCD MODULE

N O	Symbol	I/O	Function	Remark
1	VCOM	Р	Common voltage	
2	VDD	Р	Power supply: +3.3V	
3	VDD	Р	Power supply: +3.3V	
4	NC	-	No Connection	
5	RESET	I	Global reset. Keep VDD during operation. Normally pull high	
6	STBYB	Ι	Standby mode control. Normally pull High. When STBYB=H, all the functions are on. (Default pulls high)When STBYB=L, TCON and source driver are off and all output a GND.	
7	GND	Р	Ground	
8	RXIN0-	I	Negative LVDS differential data input (-)	
9	RXIN0+	I	Positive LVDS differential data input (+)	
10	GND	Р	Ground	
11	RXIN1-		Negative LVDS differential data input (-)	
12	RXIN1+	I	Positive LVDS differential data input (+)	
13	GND	Р	Ground	
14	RXIN2-	1	Negative LVDS differential data input (-)	
15	RXIN2+		Positive LVDS differential data input (+)	
16	GND	Р	Ground	
17	RXCLIKIN-		Negative LVDS differential clock input	
18	RXCLKIN +	I	Positive LVDS differential clock input	
19	GND	Р	Ground	
20	RXIN3-		Negative LVDS differential data input (-)	
21	RXIN3+		Positive LVDS differential data input (+)	
22	GND	Р	Ground	
23	NC		No Connection	
24	NC	-	No Connection	
25	GND	Р	Ground	
26	NC	-	No Connection	
27	NC	-	No Connection	

년 GooDisplay

PRODUCT SPECIFICATION

28		I	Selection for 6 bits/8bit LVDS data input
	SELB		Low : 8 bit input mode
			High : 6 bit input mode
29	AVDD	Р	Power for Analog Circuit
30	GND	Р	Ground
31	LED-	Р	LED Cathode
32	LED-	Р	LED Cathode
33	L/R	I	L/R="1": Shift left to right
			L/R="0": Shift right to left
34	U/D	I	U/D="1": Shift bottom to top
			U/D="0": Shift top to bottom
35	VGL	Р	Gate OFF Voltage
36	NC	-	No Connection
37	NC	-	No Connection
38	VGH	Р	Gate ON Voltage
39	LED+	Р	LED ANOD
40	LED+	Р	LED ANOD

Note:

- 1. For "I/O", "I" is input; "O" is output; "P" is power ; "C" is passive
- 2. Pin "NC" means Good Display will use it but customer don't need ,so please Customer don't connect it anything.
- 3. SELB is used for selecting 6bit/8bit LVDS data input, L: 8bit; High:6bit.

5. INTERFACE TIMING

5.1 INPUT SIGNAL TIMING SPECIFICATIONS

TTL MODE Data input format

Vertical timing

LVDS MODE Data input format

🔄 GooDisplay

PRODUCT_SPECIFICATION

RGB input Timing table Parallel

DE MODE

Paramotor	Symbol		Spec.		Unit
Farameter	Symbol	Min.	Тур.	Max.	Unit
DCLK Frequency	fclk	40.8	51.2	67.2	MHz
Horizontal Display Area	thd		1024	\sim	DCLK
HSD Period	th	1114	1344	1600	DCLK
HSD Blanking	thb+ thfp	90	320	376	DCLK
Vertical Display Area	tvd		600	9/10	
VSD Period	tvbp	610	635	800	Т _Н
VSD Blanking	tvbp+ tvfp	10	35	200	Т _Н
		7			

HV MODE

Horizontal timing			(\bigcirc)	\sim	
Baramotor	Symbol		Spec.		Unit
Farameter	Symbol	Min.	Тур.	Max.	Unit
DCLK Frequency	fclk	44.9	51.2	63	MHz
Horizontal Display Area	thd	//	1024	2	DCLK
HSD Period	th	1200	1344	1400	DCLK
HSD Pulse Width	thpw	$\mathcal{D}\mathcal{J}$ 1	\bigcirc	140	DCLK
HSD Back Porch	thbp	N N	160		DCLK
HSD Front Porch	thfp	16	<u> </u>	216	DCLK
Vertical Timing	7 5	710.	<i>.</i>		

Vertical Timing

11

Paramotor	Symbol		Unit		
Farameter	Symbol	Min.	Тур.	Max.	Unit
Vertical Display Area	tvd		600		T _H
VSD Period	tv	624	635	750	T _H
VSD Pulse Width	tvpw	1	-	20	T _H
VSD Back Porch	tvbp	0	23		T _H
VSD Front Porch	tvfp	1	12	127	T _H

5.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below. This LCM has a power on/off sequence control function. In order to prevent IC from power on reset fail, the rising time (TPOR) of the digital power supply VDD should be maintained within the given specifications. Please refer to "TTL mode AC electrical characterisitcs " for more detail on timing .

Sumbol	Perameter	-	Spec.			Noto	
Symbol	Farameter	Min.	Typ.	Max.	Unit	Note	
TPOR	Power rise duration	2	12	20	ms	(B)	
T _{GRB}	Min. active pulse width for GRB pin signal.	10	2 4	T.	μs	10 10	
T _{Valid}	Min. valid data start.	10	-	2	ms	(<u>1</u>)	
T _{GRB-valid}	GRB pin High to valid data start Low	1		-	ms	(2)	

	Power	ON	sequence
--	-------	----	----------

년 GooDisplay

PRODUCT SPECIFICATION

Note (1) Please avoid floating state of interface signal at invalid period.

Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.

Note (3) We recommend turn on the backlight when LCD Display normal. There is ≥8 frames.

Note (4) When power off , We recommend turn off backlight first.

6. OPTICAL CHARACTERISTICS

6.1 TEST CONDITIONS

Item	Value	Unit
Ambient Temperature (Ta)	25_2	٥C
Ambient Humidity (Ha)	50 10	%RH
Supply Voltage		
Input Signal	According to typical value CHARACTER	e in "ELECTRICAL STICS"
LED Light Bar Input Current Per Input Pin		

6.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast	Ratio	CR		400	700		-	(2)
Response Time	TR		-	5	10	ms	(2)	
Center Luminance of White		TF		-	11	22	ms	(3)
Center Luminan	ce of White	LC		500	600	-	cd/m²	(4)
Luminance unifo	rmity	δW		75	80	-	%	(7)
	Bod	Rx	θx=0°,θy=0°		0.5723		-	
Chromaticity Blu Wh	Reu	Ry	Viewing angle at		0.3383		-	(6)
	Green	Gx	normal direction	Тур0.05	0.3123	- - Typ.+0.05 - -	-	
		Gy			0.5813		-	
	Blue	Bx			0.1548		-	
		Ву			0.1171		-	
	White	Wx			0.295		-	
		Wy			0.305		-	
Chromaticity Viewing Angle	11	θx+		-	80	-		
	Horizoniai	θx-		-	80	- Deg	Dea	(1)
		θy+		-	60		Deg.	(1)
	Vertical	Өу-		-	70	-		

Note (1)Definition of Viewing Angle(θx , θy): Viewing angles are measured by BM5A

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (TR, TF):

Note (4)Definition of Luminance of White (LC):

Measure the luminance of gray level 255 at center point and 5 points

 $L_{C} = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5)Definition of Cross Talk (CT):

 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

Where:

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6)Measurement Setup:

The LCD assembly should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (7)The uniformity in surface luminance is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance by minimum luminance of 5 points luminance.

δW = Minimum [L (1), L (2), L (3), L (4), L (5)] / Maximum [L (1), L (2), L (3), L (4), L (5)]

PRODUCT SPECIFICATION

7. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	80°C, 96 hours	(4)
Low Temperature Storage Test	-30°C, 96 hours	(1)
Thermal Shock Storage Test	-30°C, 0.5hour <> 80 °C, 0.5hour; 10cycles, 1hour/cycle	(2)
High Temperature Operation Test	70°C, 96 hours	(4)
Low Temperature Operation Test	-20°C,96 hours	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 96hours	(1) (2) (4) (6)
Electro Static Discharge	Air discharge:+/-8KV, Contact discharge: +/-4KV	

Note (1) There should be no condensation on the surface of panel during test.

- Note (2) Temperature of panel display surface area should be 87 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before the reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

8. GOOD DISPLAY MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Serial ID includes the information as below:

(a)Manufactured Date:

Year:00~99,...2019=19, 2020=20, 2021=21...,2028=28. Week:01~56,first week of the year=01;second week of the year=02;... Day of the week:A~G=Monday~Sunday

 (b) Edition number: cover all the change; A1,A2...Sample order; C for mass production, C1, C2... change of order
(c) Serial No.: Manufacturing sequence of product

PRODUCT SPECIFICATION

10. PACKAGING

TBD

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of backlight will be higher than that of room temperature.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

12. SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.