

8 inch TFT Display Series

GDTL080LL-S02

Dalian Good Display Co., Ltd.

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NAME: GDTL080LL-S02

Version: D3

Customer: Commo	on
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your signature and comments.	confirmation with your

Approved By	pproved By Checked By		
宝刘	之温	ええ	
EP I.	印馨	ED 0Z	

RECORDS OF REVISION

Date	Rev.	Description	Note	Page
2023.07.28	Ver1.0	First issue .	СҮ	ALL

Contens

- **1** Technology Specifications
- 2. Module Structure
- **3** Signal timing diagram
- 4. Reliability Test Conditions and Methods
- **5** Precaution relating product handling
- 6. Outline Figure
- 7 Packing assembly drawings

1.Technology Specifications

1.1 Features

Item	Standard Value
Display	1280(RGB) x 720
LCD Type	Normally Black
Viewing Direction	Landscape Mode Optimized
Backlight	3 parallels 7 serials
Interface	LVDS
Display Colors	16.7M

1.2 Mechanical Specifications

Item	Standard Value	Unit
Outime Dimension	192.8 (H)×116.9 (V)×6.4 (D)	mm
Active Area	176.64 (H)×99.36(V)	mm
Pixel pitch	0.138(H)×0.138(V)	mm
LCM Luminance	650(Min)	$c d/m^2$

Note: For detailed information please refer to LCM drawing

1.3 Absolute Maximum Ratings

Item	Symbol	Condition	Min	Max	Unit
	VDD	-	-0.3	3.96	V
Power Voltage	VGH	-	-0.3	+40	V
	VGL	-	-25	+0.3	V
Operating Temperature	Тор	-	-30	85	°C
Storage Temperature	Тѕт	-	-40	90	°C
Storage Humidity	Hd	Ta≤60℃	-	80	%RH

Note: The absolute maximum rating values of this product not allowed to be exceeded at any times.Should be module be used with any of absolute maximum ratings exceeded. The characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

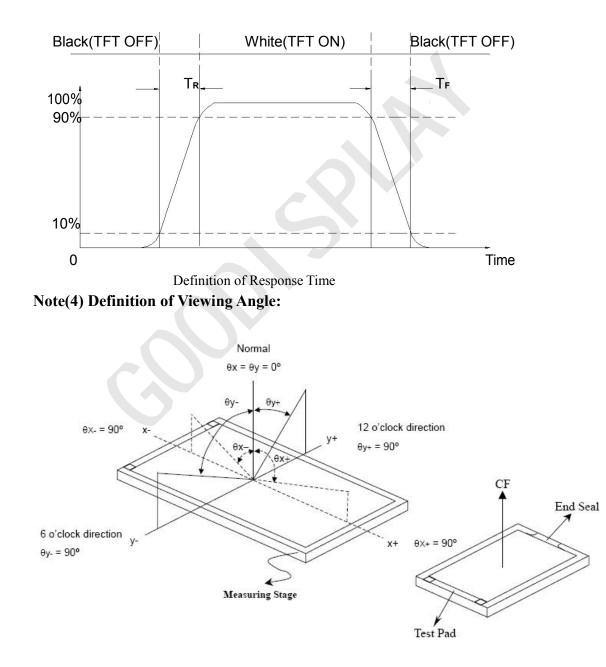
	VCC = 2.4~5.0V, VDD3=1.65~3.3V,VSS = 0V, Ta = 25°C								
Item	Symbol	Min	Тур	Max	Uni t	Remark			
	DVDD	3.0	3.3	3.6	V	Note2			
Power voltage	VGH	17	18	19	V				
	VGL	-12.0	-11.0	-10.0	V				
Input signal voltage	VCOM	-	-	-	V				
Input logic high voltage	VIH	-0.1	-	-	V	Noto?			
Input logic low voltage	VIL	0.2	-	0.6	V	Note3			

Electrical Characteristics 1.4

1.5 Optical Characteristics

Ta = 25℃

Item	Symbol	Conditions	Min	Тур	Max	Refernce
	$\theta X +$		80	85	-	
View Angle	θХ-	C > 10,	80	85	-	
view Aligie	$\theta Y +$	Ø =0 °	80	85	-	(1)(2)(3)(4)
	θΥ-		80	85	-	
Contrast Ratio	С	θ =0° , ∅ =0 °	600	900	-	(1)(2)
Response Time(rise+falling)	Trt	θ =0 °, ∅ =0 °	-	35ms	40ms	(1)(3)
LCM luminance	В	θ =0° , ∅ =0 °	650	800	-	cd/m ²
CF Color	white	x	(Тур	0.30	(Тур	(1)(2) (3)
Chronmaticity (CIE 1931)	willte	у	-0.03)	0.33	+0.03)	θx=θy=0
NTSC		-	70	75	-	(1) θx=θy=0


Note (1) Measurement Setup:

The LCD module should be stabilized at given ambient temperature $(25^{\circ}C)$ for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room.

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression: Contrast Ratio (CR) = L255 / L0L255: Luminance of gray level 255,L0: Luminance of gray level 0

Note (3) Definition of Response Time (TR, TF):

2. Module Structure

2.1 Interface Pin Description

No	Symbol	I/O	Description	Remark
1	NC	-	MUST be non-connection.	
2	VDD	Р	Power supply 3.3V(Type)	
3	VDD	Р	Power supply 3.3V(Type)	
4	GND	Р	Power Ground	
5	RESET	Ι	Global reset signal	
6	STBYB	Ι	Standby mode control signal	
7	GND	Р	Power Ground	
8	SDA	I/O	Not connect	
9	SCL	Ι	Not connect	
10	CSB	Ι	Not connect	
11	GND	Р	Power Ground	
12	TB	Ι	Vertical shift direction (gate output) selection	
13	RL	Ι	Horizontal shift direction (source output) selection	
14	GND	Р	Power Ground	
15	LV0N	Ι	Negative LVDS Differential data input(0)	
16	LV0P	Ι	Positive LVDS Differential data input(0)	
17	GND	Р	Power Ground	
18	LV1N	Ι	Negative LVDS Differential data input(1)	
19	LV1P	Ι	Negative LVDS Differential data input(1)	
20	GND	Р	Power Ground	
21	LV2N	Ι	Negative LVDS Differential data input(2)	
22	LV2P	I	Positive LVDS Differential data input(2)	
23	GND	Р	Power Ground	
24	CLKN	Ι	Negative LVDS Differential clock input	
25	CLKP	Ι	Positive LVDS Differential clock input	
26	GND	Р	Power Ground	
27	LV3N	Ι	Negative LVDS Differential data input(3)	
28	LV3P	Ι	Positive LVDS Differential data input(3)	
29	GND	Р	Power Ground	
30	VDDOT	Р	Power input for OTP programming	

Note1: All of GND pins should be connected to system ground. Note2: I/O definition.

I---Input, O---Output, P--- Power/Ground, N--- No connection Note3: VCOM is DC power supply

Note4: Scan Control Input **Scanning Direction** TB RL L Η Bottom \rightarrow Top, Left \rightarrow Right L Η Top \rightarrow Bottom, Right \rightarrow Left Η Η Top \rightarrow Bottom, Left \rightarrow Right L Bottom \rightarrow Top, Right \rightarrow Left L

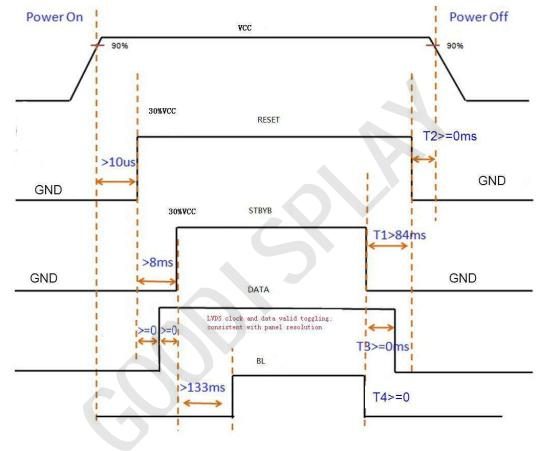
Scan direction Description

The recommended resistance of pull high/low resistor in UPDN or SHLR pin is 4.7K ohm.

2.2 Backlight Pin

PIN NO.	Symbol
1	A
2	A
3	A
4	NC
5	NTC+
6	NTC -
7	NC
8	C3
9	C2
10	C1

Connectortype:FH28-10S-0.5SH Hirose;

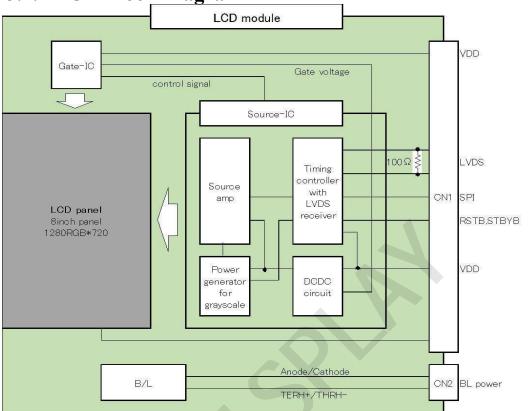

3. Signal timing diagram

3.1 Signal Timing Diagram

3.1.1 Power ON/OFF Sequence

Interface signals are also shown in the chart. Signals from any system shall be Hi- resistance

state or low level when VCC voltage is off.



Note1: The low level of these signals and analog powers are GND level.

Note2: All of power and signals should be kept GND level before power on.

IF there are remaining voltages on them, LCD might become abnormal. Note3: BL is the voltage applied to backlight, and it will stay low level before display stability; and it need to be turned off before STBYB off, refer to T4 in above figure.

Note4: DATA stands for LVDS signals. The valid LVDS signals (clock pair and data pairs in toggling state) should be consistent with panel solution and timing specification.

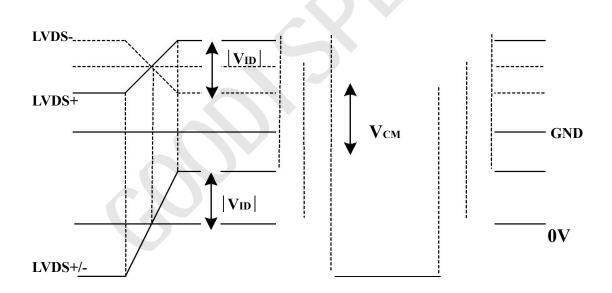
3.1.2 LCD Block Diagram

3.1.3 DC Characteristics for Backlight Driving

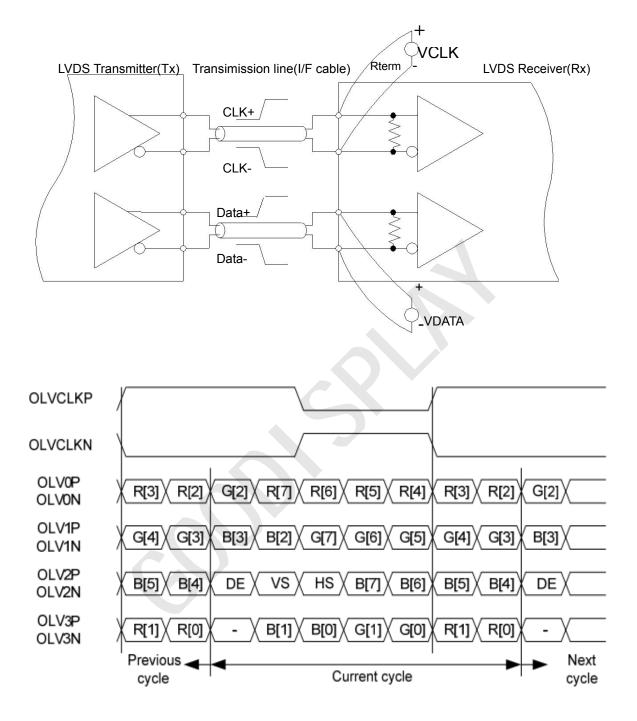
Item	Symbol	Min	Тур	Мах	Unit	Remark
Forward Current	Івг	-	95	-	mA	Note1
Forward Voltage	VBL	18.9	21.7	23.8	V	
LED Life Time	-	30000	100000	-	Hrs	Note2
Backlight Power		0	6.2	6.8	W	
Consumption		0	0.2	0.0	VV	

LED backlight characteristics

Note 1: IBL is defined for one channel LED, There are total three LED channels in

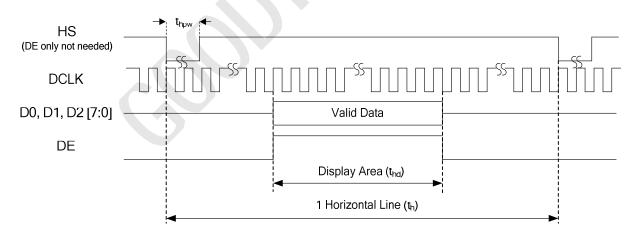

back light unit Under LCM operating, and the stable forward current should be inputted.

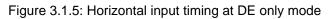
Note 2: It is estimation result based on LED supplier data. Optical performance should be evaluated at Ta=25°C only. Operating life means brightness goes down to 50% of original brightness.


3.1.4 Signal Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Differential Input High Threshold	Vth	(+100)	-	-	mV	V _{CM} =+1.2V
Differential Input Low Threshold	Vtl	-	-	(-100)	mV	V _{CM} =+1.2V
Magnitude Differential Input Voltage	V _{ID}	(300)	-	(600)	mV	-
Common Mode Voltage	Vcm	(1)	(1.2)	(1.7- VID /2)	V	-
Common Mode Voltage Offset	ΔV_{CM}	-	-	(200)	mV	-

Note (1) Input signals shall be low or Hi- resistance state when VCC is off. Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.




3.1. 5 Timing Diagram (DE Mode)

Parmeter	Symbol	1280*720 RGB (One Port)			Unit
		Min.	Тур.	Max.	
DCLK frequency	Fdclk	57.6	58.1	70	MHz
Horizontal valid data	thd		1280		DCLK
1 horizontal line	th	1320	1322	1536	DCLK
Vertical valid data	tvd		720		н
1 vertical field	t∨	727	733	760	н
Frame rate	FR	-	60	-	Hz

It just needs DE signal only, when DE only mode enable.

Horizontal

Vertical

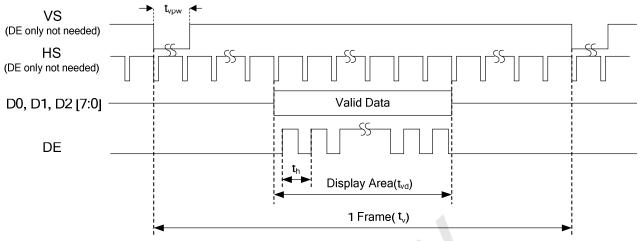


Figure 3.1.5: Vertical input timing at DE only mode

4 Reliability Test Conditions And Methods

NO	Item	Condition	Method
1	High / Low Temperature Storage	90°C/-40°C 240Hrs RH<=45% Restore 2H at 25°C	Check and record every 48Hrs
2	High / Low Temperature Operating	85°C/-30°C 240Hrs RH<=45% Restore 2H at 25°C	Check and record every 48Hrs
3	High Temperature、High Humidity Operating	60°C±2°C, 90±2%RH 240Hrs operation	Check and record every 48hrs
4	Thermal Shock	-40°C→ change→+85°C 30min 30s 30min 100cycle	Each 10 cycles end , check
5	Static Electricity	Air discharged ±15KV Connected discharged ±8KV 9 points, 5times/point	Air discharged ±15KV Connected - discharged ±8KV 9 points, 5times/point

5. PRECAUTION RELATING PRODUCT HANDLING

5.1 SAFETY

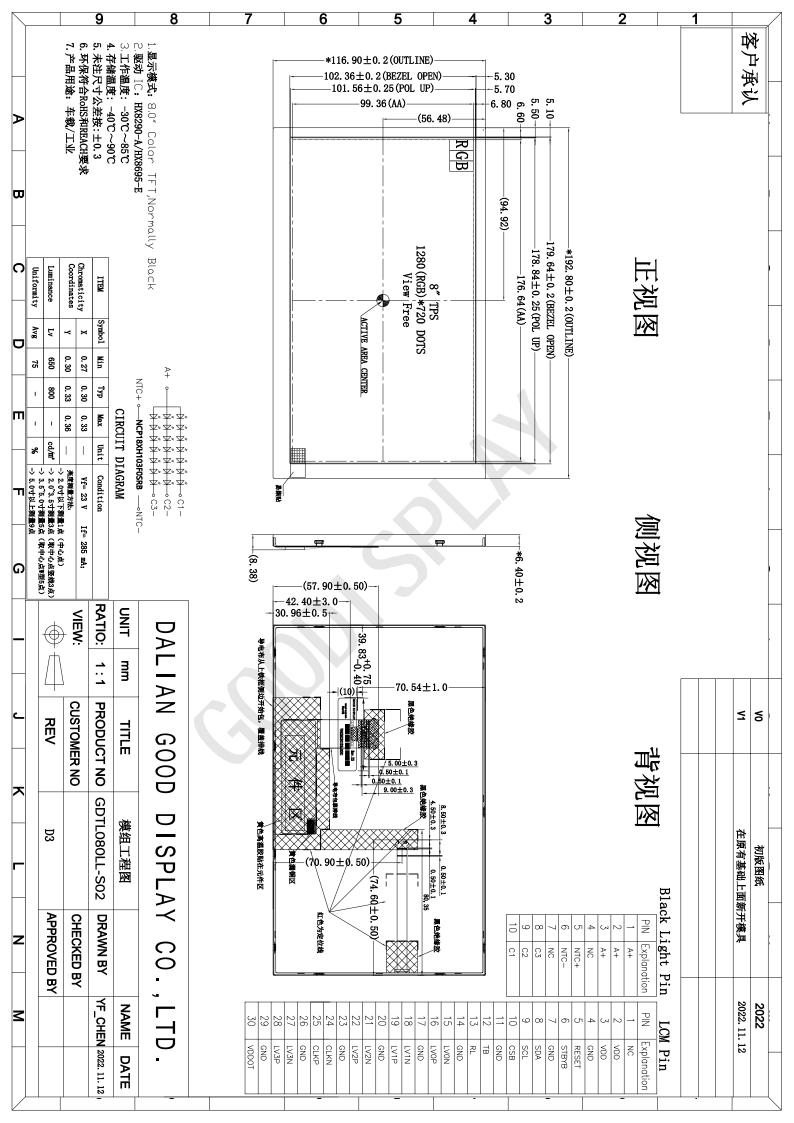
5.1.1 If the LCD panel breaks , be careful not to get the liquid crystal to touch your skin.

5.1.2 If the liquid crystal touches your skin or clothes , please wash it off immediately by

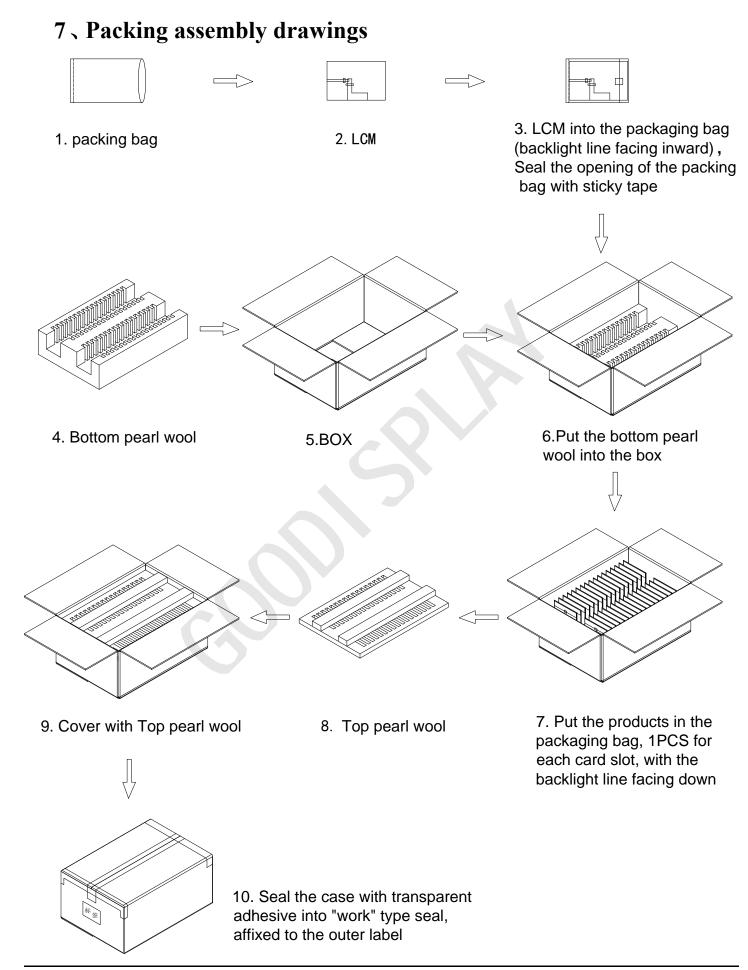
using soap and water.

5.2 HANDLING

- 5.2.1 Avoid any strong mechanical shock which can break the glass.
- 5.2.2 Avoid static electricity which can damage the CMOS LSI—When working with the module, be sure to ground your body and any electrical equipment you may be using.
- 5.2.3 Do not remove the panel or frame from the module.
- 5.2.4 The polarizing plate of the display is very fragile. So , please handle it very carefully, Do not touch, push or rub the exposed polarizing with anything harder than an HB pencil lead (glass , tweezers , etc.)
- 5.2.5 Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the Surface of plate.

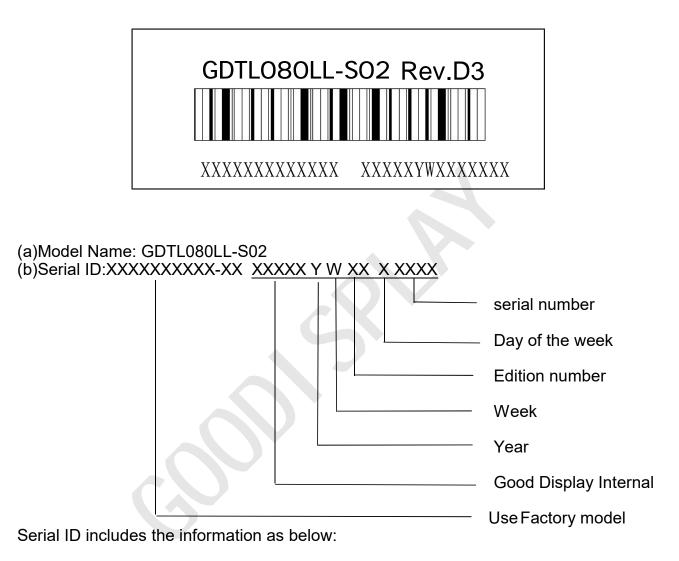

5.2.6 Do not touch the display area with bare hands , this will stain the display area.

- 5.2.7 Do not use ketonic solvent & aromatic solvent. Use with a soft cloth soaked with A cleaning naphtha solvent.
- 5.2.8 To control temperature and time of soldering is $280 \pm 10^{\circ}$ C and 3-5 sec.
- 5.2.9 To avoid liquid (include organic solvent) stained on LCM.


5.3 STORAGE

- 5.3.1 Store the panel or module in a dark place where the temperature is $25^{\circ}C \pm 5^{\circ}C$ and the humidity is below 65% RH.
- 5.3.2 Do not place the module near organics solvents or corrosive gases.
- 5.3.3 Do not crush, shake , or jolt the module.

6 . Outline Figure



8. GOOD DISPLAY MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a)Manufactured Date:

Year:00~99,...2019=19, 2020=20, 2021=21...,2028=28. Week:01~56,first week of the year=01;second week of the year=02;... Day of the week:A~G=Monday~Sunday

 (b) Edition number: cover all the change; A1,A2...Sample order; C for mass production, C1, C2... change of order
(c) Serial No.: Manufacturing sequence of product