ELCOL[®]优高电子 使用说明书 OPERATION MANUAL

U283X系列精密LCR数字电桥 U2617系列电容测量仪 U2776系列电感测试仪

常州市优高电子科技有限公司 CHANGZHOU EUCOL ELECTRONIC TECHNOLOGY CO.,LTD.

注意事项:

本说明书版权归常州市优高电子科技有限公司所有,优高公司保留所有权利。未经优高公司书面同意,不得对本说明书的任何部分进行影印、复制或转译。

本说明书中,优高公司,优高电子,优高科技,EUCOL,Eucol Electronics,Eucol Technologies 均指常州市优高电子科技有限公司,保留所有权利。

本说明书适用于 U283x 系列精密 LCR 数字电桥

本说明书包含的信息可能随时修改, 恕不另行通知。 最新的说明书电子文档可以从优高公司网站下载: http://www.eucol.com.cn

2013年06	月	第一版
2015年03	月	第二版
2018年03	月	第二版

本说明书所描述的可能并非仪器所有内容,优高公司有权对本产品的性能、功能、内部结构、外观、附件、包装物等进行改进和提高而不作另行说明!由此引起的说明书与仪器不一致的困惑,可与我公司联系。

- 魚电危险 操作,测试与与仪器维护时谨防触电,非专业人员请勿 擅自打开机箱,专业人员如需更换保险丝或进行其它维护, 务必先拔去电源插头,并在有人员陪同情况下进行。 即使已拔去电源插头,电容上电荷仍可能会有危险电压, 应稍过几分钟待放电后再行操作。 请勿擅自对仪器内部电路及元件进行更换和调整!
- 请按本仪器规定的电源参数要求使用电源,不符合规格 输入电源 的电源输入可能损坏本仪器。 更换保险丝请使用相同规格
- 远离爆炸 电子仪器不可以在易燃易爆气体环境中使用,或者在含性气体环 有腐蚀性气体或烟尘环境中使用,避免带来危险。
- 着不要向本仪器的测试端子以及其它输入输出端子随意 其它安全 施加外部电压源或电流源。
 事项 使用外部偏置电流源或电压源测试时,必需有隔离措施。
 - 带电器件务必放电后再进行测试。

在使用操作和维护本仪器的任何过程中,务必遵守各项安全防护措施。如果忽 视和不遵守这些安全措施及本手册中的警告,不但会影响仪器性能,更可能导致 仪器的直接损坏,并可能危及人身安全。对于不遵守这些安全防范措施而造成的 后果,优高电子科技有限公司不承担任何后果。

目 录

1
I
1
1
1
1
2
2
2
2
4
4
4
5
6
7
8
9
9
9
10
10
11
11
11

U283x 系列 LCR 使用说明书	目录
量程(RANGE)	
速度(SPEED)	
内阻 (RSRC)	
清零(CLEAR)	
3.2 分选显示页(BIN DISP)	
显示信息	
档比较器(COMP)	
档计数器(COUNT)	
3.3 平衡测试页(BALANCE MEAS)	
显示信息	
工具(TOOL)	
第四章 测量设置	
41 复位测量设置	17
7.1 反匹阀重仪且	
4.2 测量设置页(MEAS SETUP)	
触发(TRIG)	
延时(DELAY)	
自动 LCR(AUTO LCR)	
平均(AVG)	
监视 1/监视 2(MON 1 / MON 2)	
偏差(DEV)	
参考(REF)	
工具(TOOL)	
4.3 极限设置页(LIMIT TABLE)	
参数交换(FUNC)	21
标称值(NOM.)	
模式 (MODE)	
辅档(AUX)	
比较(COMP)	
极限数据	
工具(TOOL)	
4.4 平衡设置页(BALANCE SETUP)	24
模式 (MODE)	
工具(TOOL)	
第五章 系统配置	
5.1 系统设置(SYSTEM SETUP)	25
显示风格(SKIN)	

语言(LANGUAGE)	
通过讯响(PASS ALARM)	
失败讯响(FAIL ALARM)	
按键音(KEY SOUND)	26
密码(PASSWORD)	
保存类型(SAVE TYPE)	
日期时间(DATE & TIME)	27
HDL 边沿(HDL EDGE)	27
HDL 输出(HDL OUT)	27
HDL 延时(HDL DLY)	27
总线模式(BUS MODE)	27
总线地址(BUS ADDR)	
波特率(BAUD RATE)	
数据发送(FETCH MODE)	
系统工具(TOOL)	
5.2 系统信息(SYSTEM INFO)	
5.3. 固件升级(FIRMWARE UPDATE)	29
第六音 左战与调田	30
6.1 存储系统概述	
6.2 保存文件到 U 盘	
	23
6.5 义件列表(FILE LIST)	
	24
书 1 早 1 仅 れ 1 付 M 1	
7.1 测量精度	
7.2 性能测试	
7.3 通用指标	
附录 A 远程控制	41
A 1 DS2220 运用按制系统	41
A.I K02020 些住江前东沉	
A.2 USB 远程控制系统	42
A.3 数据格式	
附录 B HANDLER 接口 (36 芯)	

目录

U283x 系列 LCR 使用说明书	目录
B.1 基本信息	
B.2 信号线定义	
B.3 时序图	
B.4 电气特征	
附录 C 9 芯 HANDLER 接口	
C.1 基本信息	51
C.2 信号线定义	
C.3 电气特征 HANDLER 接口板 直流隔离输出 直流隔离输入	
C.3 时序参考 触发启动与测量	55

第一章 准备使用

感谢您购买和使用我公司产品,在您使用本仪器前请首先根据随机的装箱清单进行检查 和核对,若有不符请尽快与我公司联系,以维护您的权益。

1.1 检查装运

收到本产品后,请按以下过程仔细拆包检查:

警告:如果 LCR 表的外观(例如外壳、前/后面板、LCD 屏幕、电源开关和端口连接器)在运输过程中发生损坏,切勿连接电源及接通电源开关,否则会引发触电危险。

1. 检查用于包装 LCR 表的包装箱或减震材料有无损坏。

2. 检查包装箱内 LCR 附带的装箱项目是否有损坏或缺陷。

3. 检查 LCR 附带的所有装箱项目是否为指定的附件或选件。

标准配置	数量	备注
U283x 系列 LCR 表	1台	机型按订货单
U2617/U2776		
电源线	1根	随国家(地区)不同而有区别
夹具 U26011 或 U26004	1付	1m 测试线缆, 随机型不同
使用说明书	1份	
检验报告/合格证	1份	

以上检查如有任何问题,请与本公司或相关经销商取得联系。

1.2 检查电源

检查供给 U283x 的电源是否符合下述要求:

	要求
电压	100Vac~240Vac *1
频率	47~63.5Hz
最大功耗	30VA

注*1. U283x 自适应宽电压范围,无须手动切换。

保险丝规格: 250V/500mA 慢熔型(Slow-Blow),5×20mm 小型保险丝 仪器出厂已安装保险丝,请使用规定规格保险丝替换! 检查及替换保险丝,应先拔掉电源线,然后抽出熔丝座。

1.4 连接电源线

检查三芯电源线,其中一根为接地线,连接到含接地的电源插座后,可使 U283x 机体接地,从而保护用户,避免电击可能。

请确认电源线完好无损后,再将 U283x 与有可靠接地的电源插座连接。

警告: 切勿使用有任何损坏迹象的电源线, 以免遭到电击。

警告:使用所提供的带接地线的三线电源线,确保仪器可靠接地。

1.5 环境要求

- 1. 请不要在多尘、多震动、日光直射、有腐蚀气体下使用。
- Q器正常工作时应在温度为 0℃~40℃,相对湿度≤75%,请尽量在此条件下使 用仪器,以保证测量的准确度。
- 本仪器已经经过仔细设计以减少电源端的杂波干扰,然而仍应尽量使其在低噪声 的环境下使用,如果无法避免,请安装电源滤波器。
- Q器长期不使用,请将其放在原始包装箱或相似箱子中储存在温度为5℃~40℃, 相对湿度不大于85%RH的通风室内,空气中不应含有腐蚀测量仪的有害杂质, 且应避免日光直射。
- 仪器特别是连接被测件的测试导线应远离强电磁场,以免对测量产生干扰。
- 6. 保持仪器适当的通风空间,以保证仪器通风冷却环境,防止机内温升过高。 适度的最小空间要求:背面>=180mm,两侧>=60mm
- 静电防护 ESD: 仪器虽然经过仔细设计以增强抗静电冲击能力, 但仍应配置合适的 工作区以避免静电放电
- 8. 提供足够的仪器周围空间,以便紧急情况下可以迅速切断电源线。

1.6 启动仪器

按下仪器左下角的电源开关键,使之处于缩进位置,则接通电源,仪器自检,加载配置 信息,加载初始化信息并初始化测试条件,一切正常后完成开机启动过程。

如果设置了密码保护为系统(SYSTEM),将要求输入密码。

如果较长时间内不再使用仪器,应使电源线脱离电源插座,或关闭电源插座的总开关。

注意: 仪器出厂默认密码为123456。系统配置里可以设置密码状态及更改密码。!

说明: 仪器所有状态及测试参数,包括显示页,均会自动保存,开机后保持为上次关机状态。

1.7 使用夹具

进行测量必须连接适当的测试夹具或测试线。

请使用本公司配备的测试夹具或测试电缆,用户自制或其他公司的测试夹具或测试电缆 可能会导致不正确的测量结果。仪器测试夹具或测试电缆应保持清洁,被测试器件引脚保持 清洁,以保证被测器件与夹具接触良好。

将测试夹具或测试电缆连接于本仪器前面板的 Hcur、Hpot、Lcur、Lpot 四个测试端上。

对具有屏蔽外壳的被测件,可以把屏蔽层与仪器地" ,"相连。

注意:开机后,仪器应适当预热15分钟后再测量。

第二章 概述

本章主要内容:产品基本参数及功能介绍,前后面板介绍及 LCD 显示概要,以及基本的操作方法。

2.1 产品介绍

U283X 系列是用于元器件接收检验、生产线质量控制和实验室使用的通用高性能 LCR 表。 U283X 系列 LCR 可提供正常量程范围内±0.05%或±0.0005 的基本测量精度,具有六位读数分 辨率或十万分之一的稳定读数能力。

仪器采用高分辨率 TFT LCD 显示器,显示直观,信息丰富,操作应用菜单化,并具备中英文界面以及多种显示配色风格。

仪器内置比较器,具有容限及顺序极限模式,可将元件分类为4个档位(BIN),并输出 比较结果到处理机接口(Handler),同时还配合有档号及档计数显示功能。

仪器可测量 C、L、R、Z、D、Q、θ、X、G、B 等多种阻抗参数,具备两个监视参数可以同时显示四个测量参数。

仪器集成了变压器测试功能和平衡器件对比测试功能。配备专用夹具可方便测量匝数比(N,1/N),互感(M),初次级电感,初次级直流电阻;平衡对比测试功能可方便地对集成分压电阻、平衡电容和共模滤波器等器件进行对比测试。

仪器标配 USB-HOST 接口,轻松实现数据记录功能,并且支持系统固件升级;标配 USB-DEVICE 接口,可实现系统自动化测试和远程控制。

型号	测量参数
U283X	L, C, R, Z, X, G, B, D, Q, O, ESR
U2836B/U2837C	L, C, R, Z, X, G, B, D, Q, 0 , ESR, DCR [*] ,
	M*、N*、1/N*、L2*、DCR2*(* 为 U2836B 的选
	配功能)
U2617	C, R, Ζ, Χ, G, Β, D, θ, ESR
U2776	L, R, Ζ, Χ, G, Β, Q, θ, ESR

2.2 显示范围

不同类型的参数,其允许显示范围不同,如下表:

参数	测量值允许显示范围
Ls, Lp	0.00001 µ H∼99.9999kH
Cs、Cp	0.00001pF~99.9999mF
R, Rs, Rp, X, Z	0.00001Ω~99.9999MΩ
G, B	0.00001 µ S∼99.9999S
ESR	$0.00001 \mathrm{m}\Omega^{\sim} 99.9999 \mathrm{k}\Omega$
D	0.00001~99.9999
Q	0.00001~999999.9
θr	-3.14159~3.14159

θd	$-180.000^{\circ} \sim 180.000^{\circ}$	
Δ %	-99.9999%~999.999%	
如果测量数据超出显示范围时,显示为 ""		

注意:显示范围并不是仪器的测量精度范围,显示范围要比仪器的精度范围宽广得多。 仪器精度范围详见第三章节"量程范围"。

2.3 前面板介绍

序号	名称	说明
1	电源开关	接通和关闭仪器电源, 缩进位置为接通, 弹出位置为关闭。
2	LCD 液晶显示屏	显示测量结量,测试条件,系统信息等。
3	商标及型号	型号标签将对应于仪器最终所具备的功能参数,请参照本
		章"功能参数"。
4	USB HOST 接口	用于连接 USB 闪存盘(U盘)。支持 FAT16 和 FAT32 文件
		系统。支持固件升级,记录测试数据,存储屏幕图像,存
		储和调用测试参数文件等。
5	功能软键(SOFTKEY)	这部分六个键的功能是"软的",即它们的功能不是固定的,
		在不同的菜单有着不同的功能,相应功能显示在显示屏右
		侧的菜单区域。
6	主菜单键	测量键 MEAS/测量:测量结果显示页及选择。
		设置键 SETUP/设置: 测试条件设置页及选择。
		系统键 SYST/系统:进入系统设置页和选择其它系统功能。
7	LED 判别显示	当比较器工作时,可输出合格与不合格测量结果。绿灯
		PASS 表示合格,红灯 FAIL 表示不合格。此结果与当前比
		较器的工作结果一致。
8	光标键	光标键用于移动字段,当前有效设置字段以反色图像方式
		显示。

U283x 系列 LCR 使用说明书

9	接地端	此端子与仪器机箱相连,可用于测量屏蔽与保护。
10	测试端	四个测试端子,通过合适的测试夹具连接被测件 (DUT)。
11	输入键	全功能数字/字符键盘,用于输入数据,或在要求输入文件
		名等备注信息时输入字符。
		数字键 0 复用为简易测试键,用于在测量显示页面非数据
		输入状态按此键直接进入简易操作界面。
		小数点键复用为保存按键,用于在非数据输入状态按此键
		执行保存操作(保存 CSV 或者图像文件)。
12	操作功能键	清零键 CLEAR:快捷调出清零菜单,实行清零操作。详见
		测量显示之"清零"。
		键锁/解锁 LOCK/LOCAL:对面板上按键进行锁定或解锁。
		远程控制模式时,可用于取消远程控制。
		TRIG键不会被键盘锁定,但会被远程控制锁定。
		触发键 TRIG:手动触发模式时,可触发仪器测量。

2.4 后面板介绍

36 芯 Handler 接口

9 芯 Handler 接口

序号	名称	说明
1	HANDLER 接口	自动测试分选机的控制器,控制器控制仪器执行测量并
		获取比较结果信号。
2	RS232C 串行接口	提供仪器与外部设备的串行通讯接口,参数设置,命令
		等均可以由计算机设定和获得,以实现无仪器面板的远
		程控制。
3	USB 通讯接口	支持 USB TMC 和 USB CDC,功能同 2。
4	三线电源插座	用于连接交流电源,内嵌保险丝座。
5	机号标签	仪器机号 (序列号),每台仪器均拥有唯一序列号。在系
		统信息页可以查看序列号,两者应一致。
6	接地端	此端子与仪器机箱相连,用于仪器接地保护。

2.5 显示区域介绍

LCD 显示屏被划分为相对固定的几个区域,显示各页面特定信息。

序号	名称	说明
1	显示页面	指示当前显示页的页面名称。
2	工具菜单	如果显示页面有工具,当字段移到该区域时,功能软键
		标记区将显示相应可操作工具。
3	系统图标显示	以图标方式显示系统状态
		🛢 U 盘己连接; 🛛 🖳 远程控制状态;
		● 数据记录状态;
4	菜单显示区	显示与字段或快捷键对应的功能菜单。
5	信息显示区	显示操作信息,工作状态或出错信息,远程控制及出错
		信息等。
		数据或字符输入模式时,该区域显示输入缓存里的内容。

U283x 系列 LCR 使用说明书

第二章 概述

6	修正信息	显示修正状态。
7	测量结果及参数设置区	显示测量结果以及当前的测试条件。
		测量结果可以包括:阻抗测量结果,电压电流监视。
		电阻测量结果超出范围时显示:
8	时钟显示区	显示实时时钟,可在系统配置页修改日期和时间,也可
		以关闭时钟显示。

2.6 基本操作

仪器采用菜单键(或快捷键)+字段引导方式实行各项功能参数设置。 当前有效操作字段以反色图像显示。

基本操作流程

操作1:按主菜单键定位主页面或操作;

操作 2: 使用光标键移动字段;

操作 3: 使用功能软键执行功能软键所标记的的操作;

操作 4: 如当前字段支持输入模式,按下任一有效数字键,可以输入数据。输入模式下,功能软键随字段输入性质而会出现不同的输入倍率,倍率功能键还同时具有与 ENTER 键相同的确认并结束输入的功能。

基本操作示例图:

在软键区显示参数

不是所有的参数都在参数显示区以字段方式存在。少数状态参数直接在软键区操作并显示,当前有效的状态参数以不同的色带显示,如清零菜单。

第三章 测量显示

本章主要内容:对 U283X 系列所有测量显示页的显示信息及其操作进行详细描述。

3.1 测量显示页(MEAS DISP)

按测量显示 MEAS 菜单键,进入测量显示页,在该页面可以设置最常用的基本测试条件,包括:

字段名称	简述
测量参数(FUNC)	标准组合显示参数类型
频率(FREQ)	当前测试信号频率
电平(LEVEL)	当前测试信号电平
量程(RANGE)	设置测量范围
速度(SPEED)	可设置快速,中速,慢速三档
内阻(RSOU)	即源内阻,输出阻抗的选择是为了兼容其它 LCR

说明:所有上述字段在测量设置页<MEAS SETUP>也可以进行设置。

测量显示面可用字段:

多参数显示

U283X 系列可以设置一个组合参数和两个监视参数,因而可以灵活配置不同的显示参数 组合,最多可以同时组合出四种参数在 LCD 上显示出来,

在测量设置(MEAS STEUP)页面选择监视参数。

阻抗多效的共伴日本	
阻抗参数(表一)	参数含义
Ср	利用并联等效电路模型测得的电容值
Cs	利用串联等效电路模型测得的电容值
Lp	利用并联等效电路模型测得的电感值
Ls	利用串联等效电路模型测得的电感值
Rp	利用并联等效电路模型测得的等效并联电阻
Rs	利用串联等效电路模型测得的等效串联电阻
Ζ	阻抗的绝对值
R	电阻
X	电抗
G	电导
В	电纳
D	耗散因数
Q	品质因数(耗散因数的倒数)
θ	相角

阻抗参数的具体含义描述如下:

关闭显示

如果不需要显示测量结果,可以将显示关闭。关闭显示可以提高测量速度。 **☞**移动字段到"工具",按"显示"功能软键可切换显示开关。

关闭显示时,LCD 数据显示区有参数名显示,仪器完成全部测量过程,包括测量比较器, 但数据结果不在 LCD 上显示。

简易测试

U283X 系列具有简易测试显示页面,该页面以大字符显示测量结果,并且数字键 1~9 分 别对应一个测量参数,按下数字键可以直接修改对应的测量参数;也可以使用方向键修改当 前活动参数(颜色显示不同)。

☞移动字段到"工具",按"简易测试"功能软键可切换到简易测试显示页面:

说明:在非数据输入字段,按数字键盘处的 EASY 复用快捷键可以直接进入简易测试页面。

小数位锁定

U283X 系列可以锁定测量参数的小数位数和单位倍率,使之不随数据范围而变动,适合于批量产品的连续测试,或去除不稳定的显示位。

☞移动字段到"工具",按下述功能软键操作位数:

功能软键	操作功能	
小数点锁定 A	锁定或向右移动一次参数的一位小数,	固定的小数点位下方
(D.P. FIX A)	有"▲"标记,当小数移动到最右时,	转为自动方式;
小数点锁定 B	锁定或向右移动二次参数的一位小数,	固定的小数点位下方
(D.P. FIX B)	有"▲"标记,当小数移动到最右时,	转为自动方式

测量结果显示位锁定示例:

く测量显	(示)	工具	-	小数点
参数	:Cp-D	量程	:自动	锁定A
频率	:1.000kHz	速度	:中速	小数点
电十	:1.04	MUR	:1002	_ 锁定 B _
C C	n· 4	-6 F	R68nF	[显示]
	р. ,			〔关闭 打开
D	: 0.	000)22	〔简易测试〕
				开始保存
修正	:关闭			BMP
●使用软	、键选择			00:23:22

说明:测量参数发生变化时,锁定模式自动撤消。

注意:*在简易测量显示和分选显示页,小数位锁定同样有效,但分选显示页不显示锁定标记。* -------

测试频率(FREQ)

U2836 的测试频率范围: 50Hz~200kHz U2837 的测试频率范围: 50Hz~100kHz U2830 的测试频率范围: 50Hz, 60Hz, 100Hz, 120Hz, 1kHz, 10kHz 典型测试频率表如下: 50Hz 60Hz 100Hz 120Hz 200Hz 400Hz 500Hz 1kHz 2kHz 4kHz 5kHz 10kHz 20kHz 40kHz 50kHz 100kHz 120kHz 150kHz 200kHz

测试电平(LEVEL)

测试信号电平指所输出的正弦测试信号的有效值(RMS),设定值为测试端开路时输出的 信号电压有效值;

U2836/U2830 的测试电平是: 50mV~ 2.0V U2837 的测试电平是: 50mV~ 1.0V

量程(RANGE)

在量程设置字段,可以手动设置量程范围。量程统一按阻抗 Z 参数定义。 仪器根据机型的不同,量程也不同。 可以选择的阻抗量程是:10Ω,30Ω,100Ω,1kΩ,10kΩ,100kΩ 或者 10Ω,100Ω,300Ω,1kΩ,3kΩ,10kΩ,30kΩ,100kΩ 注意:锁定量程时可以有效的提高测试速度。

速度(SPEED)

测量速度可以反映仪器完成一个测量周期所需要的时间,速度越快,测量时间越短,但 测量稳定性会越差。

评估测量速度在关闭或设置以下各项附加功能的情况下:

完整的基本测量过程包括:

触发开始→启动 AD→获取数据→阻抗运算和变换→比较器并输出→格式化并显示 测量速度可以设置为:

慢速 SLOW,约 2.5 次/秒;

中速 MED,约 10 次/秒;

快速 FAST,约 40 次/秒;

说明:随着测试频率的降低,测量时间会明显延长。

内阻 (RSRC)

内阻即源内阻或输出阻抗,串接在信号源与被测件 DUT 之间,用于限制最大输出电流和 信号源保护。如下图 Rs 所示:

由于输出阻抗的存在,实际被测件 DUT 上的电压电平 ⑦ 或电流电平 ④,并非所设置的测试信号电平 Vs 或 Is,参见第三章测试信号电平的定义:

电压电平:测试端开路时的输出电压;电流电平:测试端短路时的输出电流

电压电平:
$$Idut = \frac{Vs}{|Rs + Rx + jXx|}$$
 $Vdut = Vs - Idut \times Rs$

...

电流电平: $Idut = \frac{Is \times Rs}{|Rs + Rx + jXx|}$ $Vdut = (Is - Idut) \times Rs$

仪器有三种输出阻抗可以选择: 100Ω、50Ω、30Ω或者 100Ω、30Ω、10Ω。 具体内阻随机型而不同。

清零(CLEAR)

在测量显示页,按 CLEAR 键可实行快捷清零操作。

清零用于减少夹具及测试引线杂散阻抗带来的测试误差,清零是用户修正系统的一部分, 通过清零可满足基本的测量要求。清零包括开路清零和短路清零。

注意:执行开路/短路清零操作前,请确保测试端处于开路/短路状态

注意:如果开路/短路清零开关处于关闭状态,那么相应清零数据并不被用于修正计算。 按清零 CLEAR 键后出现清零菜单显示如下:

注意:再按 CLEAR 键可恢复原字段功能软键显示。

功能软键

操作功能

点频开路清零(SPOT OPEN)	用于对当前频率字段显示的频率执行开路清零;
全频开路清零(SWEEP OPEN)	对所有频率执行开路清零;
开路清零(OPEN)	开路清零开关,用于打开或关闭开路清零功能;
点频短路清零(SPOT SHORT)	用于对当前频率字段显示的频率执行短路清零;
全频短路清零(SWEEP SHORT)	对所有频率执行短路清零;
短路清零(SHORT)	短路清零开关,用于打开或关闭短路清零功能;

3.2 分选显示页(BIN DISP)

按测量显示 MEAS 菜单键,再按"分选显示"功能软键,进入分选显示测量页,可显示 档号及进行档计数。档号以大字符突出显示,而测量结果则以小字符辅助显示。

分选显示页与测量显示页的测量与比较过程完全相同,仅仅是显示内容上的区别! 分选显示页只有工具字段可以设置,用于开关档比较器和档计数器,以及计数器清零。 分选显示页显示内容:

显示信息

分选显示页的显示内容(非设置字段)如下:

- 1. 参数(FUNC):显示当前仪器测量参数;
- 2. 标称值(NOM.):显示极限表所设置的标称值
- 3. 极限参数:显示各档极限;
- 4. 合格档计数:显示各合格档计数值;
- 5. 不合格品计数:显示不合格品计数值;
- 6. 档号: 以大字体突出显示档号;
- 7. 测量值: 小字体显示参数测量结果;
- 8. 校准(CORR):显示开路、短路校准开关信息

说明:*了解并设置比较器,请到极限设置页<Limit Table>。*

档比较器(COMP)

 要使用比较器,必须打开比较器开关。

 ●移动字段到"工具",使用功能软键打开或关闭比较器:

 功能软键
 操作功能

 打开(ON)
 打开比较器

 关闭(OFF)
 关闭比较器,即不进行分选

说明: 极限设置页<Limit Table>同样可设置比较器开关。

档计数器(COUNT)

U283X 系列可以对分选出的档进行计数,共5个计数器:3个合格档,2个不合格档(辅助档 AUX 和超差档 OUT)。

每个计数器的计数显示上限为 999999,超出后计数器自动归 0。 计数器功能开启后,"计数(COUNT)"边显示*标记。 计数值不会随仪器保存,仪器复位后,计数归 0。 ☞移动字段到"工具",使用功能软键打开或关闭计数器: 功能软键 操作功能 打开(ON) 打开计数器,显示*计数标记,如果比较器是打开的,就会有计数产生。 关闭(OFF) 关闭计数器

计数器复位操作:

☞移动字段到"工具",使用"计数清零"功能软键,即可清除计数器值。 计数清零有操作确认提示,以防止误操作。

注意:比较和计数功能状态,在测量显示页也同样在工作,只是没有显示。

3.3 平衡测试页(BALANCE MEAS)

按测量显示 <u>MEAS</u> 菜单键,再按"平衡测试"功能软键,进入平衡测试页,可进行平衡器件的对比测试。

平衡测试页显示内容:

显示信息

平衡测试页的显示内容(非设置字段)如下:

- 1. 测量值:显示当前参数的测量结果;
- 2. 圈比 (N): 显示圈数比的测量结果
- 3. 相位: "+"表示相位一致, "-"表示相位相反
- 4. 校准(CORR):显示开路、短路校准开关信息

工具(TOOL)

使用工具可以打	打开或关闭相位和圈比的显示。	
☞移动字段到	"工具",使用功能软键进行操作	Ē:
功能软键	操作功能	
相位 PH	打开或关闭相位测量的显示	
圈比 N	打开或关闭圈比测量的显示	

注意:相位始终参与比较判断,即使关闭相位测量显示。

第四章 测量设置

本章主要内容: 与测试条件和扩展的测试功能相关的设置进行详细描述,包括基本测量 设置和极限设置。

4.1 复位测量设置

对仪器所进行的所有设置,包括来自 SCPI 命令所进行的设置,仪器均会即时保存在内部 由电池续航的 RAM 中,因此,下次开机仪器总是会保留关机前的状态。

☞这些操作过程可以复位相关设置:

复位基本设置 在测量设置页,移动光标到"工具"字段,按"复位设置"功能软键。 复位极限列表 在极限设置页:

- 1. 移动光标到"方式"字段,选择%, ABS 或 SEQ;
- 2. 移动光标到"工具"字段,按"清除列表"功能软键;
- 3. 重复 1-2 分别清除每种极限方式的极限表格 (按需要操作);
- 4. 手动复位极限表上方其它设置。

复位全部设置 在系统配置页,移动光标到"工具"字段,按"系统复位"功能软键。 **☞使用 SCPI 序列命令复位设置:**

单命令复位基本设置: *RST

其它设置参阅 SCPI 命令表。

☞通过设置文件复位所有测量参数:

用户在设置仪器之前,可以首先保存一个名为<Default>的默认设置文件,设置文件包含 了所有的测试参数,这些文件存在内部 ROM 中而不会丢失,之后就可以随时加载这个默认文 件以复位设置。

说明: 有关文件保存操作, 参见"存诸与调用"章节

☞完全初始化复位设置(不推荐使用):

🔨 警告:非设备维护及专业人员请勿擅自打开机箱

<u>重置仪器所有参数</u>:

关机,拔去电源线,待几分钟后,打开机箱,在仪器正面控制电路板上,有用于保存仪器参数的 CR 型锂电池。将电池脱开电池座片刻后,再装回原位。

重新装好机箱,接通电源并开机,此时仪器所有测量设置参数和系统配置状态均复原到原始出 厂值,包括系统时间。

4.2 测量设置页(MEAS SETUP)

按 SETUP 菜单	自键,进入测	量设置页面。	使用光标键移动到一	下述字段,	可以进行相关设置:

字段名称	简述
测量参数(FUNC)	标准组合显示参数类型
频率(FREQ)	当前测试信号频率
电平(LEVEL)	当前测试信号电平
量程(RANGE)	设置测量范围
速度(SPEED)	可设置快速,中速,慢速三档
内阻(DC BIAS)	即源内阻,输出阻抗的选择是为了兼容其它 LCR
测量参数(FUNC)	标准组合显示参数类型
频率(FREQ)	当前测试信号频率
注: 以上字段在测量显示	示页也可以设置,本节不再重复,请参见第三章内容。
触发(TRIG)	设置触发模式(触发源)
延时(TRG DLY)	设置触发延时等待时间
自动 LCR(AUTO LCR)	设置元件自动识别功能
平均(AVG)	设置平均次数会降低测量速度
监视 1(MON 1)	设置监视参数
监视 2(MON 2)	设置监视参数
偏差 A(DEV A)	选择主参数偏差模式
参考 A(REF A)	设置主参数偏差参考
偏差 B(DEV B)	选择副参数偏差模式
参考 B(REF B)	设置副参数偏差参考
工具(TOOL)	将测量设置恢复到默认参数

测量设置页可用字段:

< <u><<u>参数:Ls-Q</u></u>	工具 ■ 量程 :自动	测量设置
频率 :100.0kHz 电平 :1.0000V	速度 :快速 内阻 :100Ω	极限设置
触发 :内部 延时 :Oms 自动LCR :关闭	平均 :1 监视 1:Rs 监视 2:Z	
偏差 A:关闭 偏差 B:关闭	参考 A: 0.00000pH 参考 B: 0.00000p	文件列表
●使用软键选择		10:58:34
 	可设置字段	

触发(TRIG)

U283X 有五种触发源:内部 INT,手动 MAN,外部 EXT,器件 DUT,总线 BUS。 仪器忽略非测量页的触发信号;非当前触发模式下的触发信号是无效触发。

触发模式	功能描述	
内部 INT	触发信号自动产生, 仪器连续不断进行测量	
手动 MAN	由面板 TRIG 键触发测量	
外部 EXT	从外部 BNC 触发端子或 HANDLER 接口触发仪器进行测量	
	可以设置成上升沿或下降沿触发	
	触发脉冲宽度应大于 10us, 如有抖动可能会产生多余触发	
器件 DUT	由被测件 DUT 稳定接入测试端后产生触发测量。	
	需要在极限表设置标称值,在标称值附近的 DUT 被认为是有效接入	
总线 BUS	接受到总线发送的触发命令后进行一次测量*1	
注*1. BUS 总线触发不能在仪器面板设置,只能通过总线命令设置。		

注意:测量期间的触发信号会被记忆到下个测量周期,但重复的触发信号被忽略。

延时(DELAY)

触发延时是插入到触发信号之后,开始测量之前的一段时间,用于测试时测量同步或等 待器件稳定连接。触发延时设定时间范围为 0~60s,最小单位 ms。

自动 LCR(AUTO LCR)

自动 LCR 是一种自动元件识别功能,根据元件性质自动选择电感、电容或电阻参数进行显示,包括串联或并联等效模式。

电感参数自动选择为: Ls-Q, Lp-Q 电容参数自动选择为: Cs-D, Cp-D

电阻参数自动选择为: Ζ-θr

说明:更改测量参数后,自动LCR 会被自动设置为OFF。

注意: 自动元件识别功能与自动 DUT 触发功能不应同时使用! 两者在判据逻辑上存在干涉。

平均(AVG)

平均即指取连续 N 个测量结果,以其平均值作为一次测量结果。设定范围为 1~255。

监视 1/监视 2(MON 1 / MON 2)

使用监视功能可以使仪器实现最多 4 个测量参数同时显示在 LCD 上,监视参数可以设定 为阻抗参数或者电压/电流参数。

监视参数为电压时,可以在基本测量显示页显示被测件上的实际电压,即 Vm 显示。 监视参数为电流时,可以在基本测量显示页显示被测件上的实际电流,即 Im 显示。 监视参数也可以是以下阻抗参数:

Ls Lp Cs Cp Rs Rp Z Y D Q $\theta r \ \theta^{\circ}$ R X G B

偏差(DEV)

偏差模式用以控制测量结果显示方式,偏差显示就是以测量值与设置的参考值之差进行 显示。可用于协助观察测量结果随不同测试条件或环境条件的变化情况,也可用于分选测量 时辅助观察测量结果(将偏差显示模式、偏差参考设置成与极限公差模式、标称值一致)。

偏差显示可应用于主参数和副参数,或两者同时使用。偏差显示有两种方式:

1. 绝对偏差显示模式(ΔABS)

以实际测量值与偏差参考值之差显示,参数名称前有"Δ"标记。

 $\Delta ABS = X - Y$

X: 实际测量值

Y: 偏差参考值

百分比偏差显示模式(Δ%)
 以实际测量值与偏差参考值之差的百分比显示,参数名称前有"Δ"标记,单位为%。
 Δ% = (X-Y)/Y×100(%)

说明: 偏差模式只对测量显示(含全屏显示)和分选显示页有效,其它测量页无效。 注意: 偏差模式只影响测量结果显示,而不影响用以分选比较的测量数据!

参考(REF)

☞移动字段到"参考 A"或"参考 B",使用输入键及倍率功能软键输入数据,或使用功能软键"测量"获取已有的测量结果:

功能软键 操作功能

测量 将一次或二次参数的测量结果缓冲区的数据直接应用为偏差参考 值。设置之前,应先在测量页面对器件进行正确测量。

工具(TOOL)

使用工具可以复位测量设置的所有参数至出厂默认状态。 移动字段到"工具",使用功能软键进行操作:
功能软键 操作功能
复位设置 将所有测量设置复位到出厂默认状态

4.3 极限设置页(LIMIT TABLE)

比较器功能是将当前实测结果与预设的一组数据限进行比较,从而作出合格(包括合格 所在的档位)与不合格的判断,并可从 HANDLER 接口输出比较结果,以控制机械分选系统。 按测量设置 SETUP 菜单键,再按"极限设置"功能软键进入极限设置页面。

在极限设置页,可以配置比较器参数,设置极限数据表:

字段名称	简述
参数(FUNC)	交换主参数和副参数的极限格式
标称值(NOM.)	设置主参数的标称值
模式(MODE)	设置极限比较方式
辅档(AUX)	设置辅助档开关
比较(COMP)	设置比较器开关
极限数据表	分别设置容限和顺序极限数据表
工具 (TOOL)	清除极限表

极限表可以设置3组主参数上下限,1组副参数上下限。可将被测件分成3级合格档(BIN1 ~ BIN3),一个不合档(OUT),此外,主参数在极限之内而副参数在极限之外的被测件,可以被分类到辅助档(AUX)。

以上分选均支持 HANDLER 输出,同时还可以输出主参数上超 PHI、主参数下超 PLO 和副参数超差 SREJ 信号。

K极限设置> 工具 ■ 参数:Ls=Q 标称值: 0.0000pH	测量设置
模式:ABS 辅档:关闭 比较:打开 档 下限[H] 上限[H] 1 -10.0100m 10.0100m	极限设置
2 -10.0200m 10.0200m 3 -10.0300m 10.0300m 2nd 40.0000 41.0000 []	
	文件列表
●使用软键选择	11:03:12
可用字段	

参数交换(FUNC)

参数交换功能可以将主参数和副参数的极限表相互交换。例如,当测量功能为 Cp-D 并使用参数交换功能时,参数交换字段显示变为 D-Cp;交换后,参数 D 就可以有 3 档极限,而参数 Cp 为 1 档极限。

注意:参娄交换只交换极限表形式,而不交换已设置的数据本身。

标称值(NOM.)

标称值仅用于主参数。**标称值仅用于容限模式,顺序模式不需要使用标称值。**

模式 (MODE)

比较功能提供两种主参数极限设置模式:

容差模式(TOL):将与标称值的偏差值设定为比较极限值,容差又分为百分比容差(%TOL) 和绝对值容差(ABS TOL)。

顺序模式(SEQ):将测试值范围作为比较极限值,比较极限值必须按从小到大的顺序设置。

注意:当设定容差方式的极限值时,误差范围必须按照由小到大设置。如果 BINI 设置的误差 范围最大,那么所有的被测件将分选到 BINI 档中。 容差方式下,下极限不一定要小于标称值,上极限不一定要大于标称值。各档极限范 围之间可以不连续,也可以有重叠范围。

 ABS TOL (绝对值容限模式) 被测件的测量值减去标称值后再进行比较。即:
 ABS = X - Y
 其中: X 为当前被测件的测量值。
 Y 为设定的标称值。

 % TOL (百分比容限模式)
 以被测件的测量值与标称值之差的百分比进行比较。即:
 % = X - Y
 Y × 100%
 其中: X 为当前被测件的测量值。
 Y 为设定的标称值。

辅档(AUX)

主参数在极限之内,而副参数在极限之外的,既可以分类为不合格档(OUT OF BIN),即分类为辅助档(AUX)。 ☞使用"辅档"字段设定辅助档开关:

功能软键	操作功能			
打开(ON)	主参数合格,	副参数不合格的,	归为 AUX 档	
关闭(OFF)	主参数合格,	副参数不合格的,	归为 OUT 档	

注意:当副参数仅设定了下限值,辅助档设置为打开,如果被测件的主参数在极限设定范围内, 而副参数值小于或等于副参数下限值时,被测件被分选到附属档中。同样当副参数仅 设定了上限值,附属档设置为打开,如果被测件的主参数在极限设定范围内,而副参数 值大于或等于副参数上限值时,被测件被分选到附属档中。

比较(COMP)

☞ 使用"比较"字段打开或关闭比较器:

说明:分选设置页<BIN DISP>同样可设置比较器开关。

极限数据

极限数据应遵循"由小到大,档位包容"的原则,否则分选结果将可能不符合预期,不 一定所有档位极限都要设置,未设置数据的档以忽略的方式跳过。

如果不需要全部 3 组极限数据,应尽可能设置最前面的档位而空余后面的档,如果在中间空档,分选结果将可能不符合预期。

☞使用光标键移动到各极限字段,使用输入键及倍率功能软键输入数据,或使用功能软键删除极限,"-----"表示极限未设置。

工具(TOOL)

使用工具可以清除当前比较模式下的极限数据表。

☞移动字段到"工具",使用功能软键进行操作:

功能软键	操作功能
清除列表	清除当前比较模式下的极限数据

说明:只清除当前比较模式下的极限数据,如均需清除,切换模式后再执行上述功能。

4.4 平衡设置页(BALANCE SETUP)

平衡对比测试功能是对平衡类器件的进行对比测试,从而作出合格与不合格的判断,并可从 HANDLER 接口输出比较结果,以控制机械分选系统。

按测量设置 SETUP 菜单键,再按"平衡设置"功能软键进入平衡设置页面。

在平衡设置页,可以配置比较器参数,设置极限数据表:

字段名称	简述
模式	设置平衡比较的模式
下限	设置比较器的下限值
上限	设置比较器的下限值
工具 (TOOL)	复位设置用来清除极限表

模式 (MODE)

平衡比较功能提供三种参数极限设置模式:

- **|ABS |**: 当|L2-L1 | <上限值时,判定为合格。
- Lo[~]Hi: 当下限值<(L2-L1)<上限值时, 判定为合格
- **百分比(%)**: 当(|L2-L1 | /L1)<上限值时,判定为合格。

工具(TOOL)

使用工具可以复位平衡设置到默认模式,并清除所有模式下的极限数据表。 移动字段到"工具",使用功能软键进行操作:
功能软键 操作功能

第五章 系统配置

本章主要内容:系统功能配置,包括风格设置,接口设置,时间日期管理,系统信息查 看以及系统测试等。

5.1 系统设置(SYSTEM SETUP)

系统设置里的参数独立保存,与测量设置不相关,测量设置文件也不包含其内容。 按 SYSTEM 菜单键,即进入系统设置。

系统设置里可设置字段有:

字段	简述
显示风格(SKIN)	LCD 色彩方案
语言 (LANGUAGE)	中英文显示切换
通过讯响(PASS ALARM)	合格时讯响模式*1
失败讯响(FAIL ALARM)	不合格时讯响模式*2
按键音(KEY SOUND)	切换按键回音
密码 (PASSWORD)	设置密码状态及修改密码
保存类型(SAVE TYPE)	设置快捷保存键的保存功能
时间日期(TIME)	设置系统时间和日期
总线模式(BUS MODE)	通讯接口类型选择
总线地址(BUS ADDR)	GPIB 地址或多机模式下 RS485 地址
波特率(BAUD RAGE)	设置串口通讯波特率
数据发送(FETCH MODE)	测量结果可设置为自动发送到总线
HDL 触发边沿(HDL TRIG EDGE)	默认为上升沿触发
HDL 输出模式(HDL OUTPUT)	设置 HANDLER 输出保持或延时清除
HDL 延时(HDL DELAY)	设置 HANDLER 信号延时时间
工具 (TOOL)	加载缺省设置或系统复位(软重启)

统设置页面的显示及字段信息:

<系统设置> 工具 显示风格:简洁灰 总线模式:USB-CDC	系统设置
语言 :中文 总线地址:8 :通过讯响:关闭 波特率 :9600 :生败讯响:长音 数据发送:查询	系统信息
按键音 :打开 HDL边沿 :上升沿 密码 :关闭 HDL输出 :保持	固件升级
保存类型:BMP HDL延时:Oms 日期:2013-06-08	系统测试
(<u>P) P):10:38:10</u>	文件列表
●使用软键选择	10:58:16
可用字段	

显示风格(SKIN)

选择 LCD 显示色彩主题,可满足不同的视觉效果,或适应不同的环境光线条件。

语言(LANGUAGE)

选择中文或英文显示界面。

通过讯响(PASS ALARM)

失败讯响(FAIL ALARM)

设置合格/不合格时的讯响方式及启用/关闭面板 PASS/FAIL 指示灯。

按键音(KEY SOUND)

打开或关闭按键音。按键音打开时,系统只要接受到按键输入信息,蜂鸣器即发出"滴" 声。 **一**使用"按键音"字段选择打开或者关闭按键音:

密码(PASSWORD)

设置密码保护状态,或修改密码。设置密码保护后,在需要输入密码时,信息显示区提示"请输入密码:",用数字键输入密码。

仪器的密码保护有三个层次:

- KEYLOCK(解锁): 解除键盘锁时,要求输入密码;
- SYSTEM(系统): 解除键盘锁以及系统开机(包括软启动)时要求输入密码;
- FILE(文件): 解除键盘锁以及进入文件管理页面时,要求输入密码;

密码保护也可以完全关闭,即任何操作都不需要密码。

密码字段还提供密码修改功能,任何改变密码保护状态的操作均需要输入密码进行确认。

注意:请务必牢记密码!系统默认密码为123456。

保存类型(SAVE TYPE)

设置保存操作时的文件类型。保存媒体是被有效识别的连接到 USB (HOST) 的 U 盘。 保存键可以实现两类保存功能:保存测量结果(数据记录)和保存屏幕快照(截屏)。 数据记录文件为*. CSV 格式;

屏幕快照文件可以为*. GIF 格式, *. BMP 格式或*. PNG 格式。

说明:进一步了解保存功能,参阅"存储与调用"

说明:每个页面的工具菜单中都具备开始保存功能软键,保存的类型就是这里设置的文件类型;输入键盘中的 SAVE 复用键可以实现快速的保存功能。

日期时间(DATE & TIME)

仪器具有内置实时时钟,由内置 CR 型锂电池供电。**仪器的日期符合公历历法,时间采用** 24 小时制式。

☞用光标键分别移动字段到年、月、日、时、分、秒字段,使用输入键输入数据,或使用功能软键增减时间,还能打开或者关闭页面时间显示功能。

HDL 边沿(HDL EDGE)

当触发方式为外部(EXT)时,触发信号由外部 BNC 端子或 HANDLER 接口输入,该触发 信号要求是一个宽度大于 10 µs 的 TTL 脉冲。

☞ 使用"HDL边沿"字段选择上升沿(RISE)或者下降沿(FAIL)触发仪器测量。

HDL 输出(HDL OUT)

打开比较器后,HANDLER 接口将输出分选比较结果,该设置决定信号是否在接口上保 持到下次测量。

☞使用"HDL输出"字段选择 HANDLER 输出信号模式:

保持(HOLD) 输出信号保持到下次测量时更新

清除(CLEAR) 输出信号延时后自动清除,延迟时间由"HDL 延时"字段指定

HDL 延时(HDL DLY)

HANDLER 输出模式为"清除"时,延迟时间由该字段指定。延迟时间范围为0~60s。 "移动字段到"HDL 延时",使用输入键输入数据,或使用功能软键增减延时时间。

总线模式(BUS MODE)

仪器支持 RS232C 和 USB(DEVICE)通讯,连接到 PC 后,通过兼容的 SCPI 远程命令可实 行全部仪器功能和数据采集。

说明:有关通讯命令,请参考"U283X 系列精密 LCR 数字电桥编程手册"。

远程仪器控制前,应先选择通讯类型。

●RS232C:通用异步串行收发器(UART),支持多种常用波特率,可连接到 PLC 控制器。 ●USB(DEVICE):通用串行总线,包含 USB-CDC 和 USB-TMC 模式。

USB-CDC 模式(通讯设备类):将仪器虚拟为 COM 端口(Vcom),可以实现如同 RS232C 一样的通讯方式。

USB-TMC 模式(测试与测量类):符合 USBTMC-USB488 和 USB2.0 协议,可以实现如同 GPIB 一样的通讯控制。

总线地址(BUS ADDR)

用于设置本机地址, GPIB 接口使用这一地址 (GPIB 预留设置), 地址范围为 0~30。

波特率(BAUD RATE)

波特率是 RS232C 通讯总线(同样也用于 USB-CDC)上的数据传输速率。 本仪器支持五种常用波特率: 1200bps, 9600bps, 19200bps, 38400bps, 115200bps。

数据发送(FETCH MODE)

仪器在通过 RS232C(或 USB-CDC 模式)、GPIB 与 PC 通讯时,测量结果可以自动或查询 方式发送到总线:

●QUERY: 接受到上位机发送的数据读取命令后,将最近一次的有效测量结果送入输出 缓冲区。

●AUTO: 仪器每测量一次,即将测量结果送入输出缓冲区。

说明:在RS232C或USB-CDC总线上,输出缓冲区中的数据总是被立即发送,在GPIB总线上, 输出缓冲区中的数据在仪器被任命为讲者后发送。

系统工具(TOOL)

在系统工具字段,可以复位仪器(软启动),或将系统配置参数全部重置。

功能软键	操作功能
默认设置(Default Setting)	将所有系统参数全部重置为默认值(时间仍保留)
	包括密码方式及密码也被重置,因此要求输入密码才允
	许此操作。重置后,默认密码为 123456
系统复位(System Reset)	重置所有测量设置并软启动系统

系统默认参数表:

显示风格	炫酷黑(BLACK)
语言	中文 (CHINESE)
通过讯响	关闭(OFF), PASS 指示灯打开
失败讯响	长声(LONG), FAIL 指示灯打开
按键音	打开 (ON)
密码方式	密码关 (OFF), 原始密码 123456
保存类型	数据记录 CSV
HDL 触发沿	上升沿 RISE
HDL 输出模式	保持 HOLD
HDL 延时	0ms
总线模式	RS232C
总线地址	8
波特率	9600
数据发送	查询 (QUERY)

5.2 系统信息(SYSTEM INFO)

按 **SYSTEM** 菜单键,再按"系统信息"功能软键,可进入系统信息显示页。 该页面显示本机的型号,序列号,固件版本,版权及安装模块等信息。

<系统信息>	系统设置
名称 :精密LCR数字电桥 序列号 :109J12002	系统信息
固件版本 :V1.31.0927 版权所有 :Eucol Electronic Tech.	固件升级
已安装模块:RS2320,0SB H0ST/SLAVE,	系统测试
	文件列表
●使用软键选择	11:38:36

5.3 固件升级(FIRMWARE UPDATE)

连接到 USB(HOST)的 U 盘被有效识别后,才可启用升级功能。

仪器可以很方便的升级固化软件,使用过程中如有软件问题,可以随时与优高电子有限 公司联系。

☞按以下过程升级固化软件:

- **步骤 1:** 下载本公司发布提供的升级文件,文件名一般包含仪器型号,扩展名为 36U。如果是压缩包,请将其解压;
- 步骤 2: 将其复制到已格式化的 FAT32 或 FAT16 的 U 盘根目录下;
- 步骤 3: 待升级仪器开机状态下,将U盘插入前面板的USB-HOST 接口;
- **步骤 4:** U 盘成功安装后,按 SYSTEM 菜单键,再按"固件升级"功能软键,进入固件 升级显示页,显示 U 盘上升级文件列表(最多 10 个),长文件名以 8.3 格式显示。

说明: *仪器最多只显示 10 个升级文件,可使用 PC 文件管理器删除部分无效文件。* 说明: 符合升级文件格式的文件都可以被显示,但只有通过升级验证后才会被仪器安装。 注意: 如果 U 盘包含多个分区未能显示文件,按 ENTER 键切换分区。

步骤 5: 使用光标键选择适合本机的升级文件,按"升级"功能软键;

- **步骤 6:**确认升级操作后,仪器验证升级文件,如验证正确,则将升级文件安装到 FLASH ROM 中,安装完成后自动重启。
- 可以到"系统信息"页查看最新升级后的固件版本。

注意:升级过程中不能断电,否则会引起仪器固件损坏而不能工作,需要返厂维修。

第六章 存储与调用

本章主要内容: U283X 系列 LCR 的存储与调用功能

6.1 存储系统概述

通过存储与调用功能,可以即时保存参数,将测量设置保存到内部 ROM 或外部 USB 存储器,保存测量结量或屏幕快照到外部 USB 存储器。

存储功能

通过仪器的存储系统,可以实现以下保存功能:

- 即时保存用户修正数据及设置;
- 即时保存测量设置参数,系统配置参数;
- 将测量设置参数以文件形式保存在内部 ROM 存储器或外部 USB 存储器;
- 保存屏幕快照文件到 USB 存储器 (截屏功能);
- 保存测量结果到 USB 存储器 (数据记录功能)。

调用功能

经过存储后,可以实现以下调用功能:

- 即时自动调用用户修正数据及设置;
- 即时自动调用测量设置参数;
- 即时自动调用系统配置参数;
- 通过文件管理功能加载内部 ROM 或者外部 USB 存储器中的测量设置文件;

存储媒体类型

仪器使用以下媒体保存信息:

媒体类型	用途
内部 RAM (电池供电)	即时保存测量参数和系统配置
内部 FLASH ROM	用户修正数据及其设置,测量设置文件
外部 USB 存储器(U盘)	测量设置文件,屏幕快照文件,数据记录文件

一学在文件列表页,可以使用ENTER 键切换媒体(在内部存储器和U盘间切换)。

U 盘文件结构

加下主任二

将 USB 存储器连接到仪器后, 仪器按照预先确定的结构方案组织和使用存储器上的文件 夹和文件。

如下农所小			
文件类型	扩展名	最多文件数量*1	文件路径*2
测量设置文件	EST	500	\U2836\SETUP
数据记录文件	CSV	200	\U2836\DATA
屏幕快照文件	GIF, BMP, PNG	200	\U2836\IMAGE
升级文件	36U	10	根目录

注*1. 指使用同一扩展名的最多数量; 注*2. 文件夹按不同的仪器型号而有区别

说明: 文件夹由仪器自动创建, 除升级文件外, 文件名也由仪器自动编号生成。

USB 存储器应符合 FAT16 或 FAT32 文件系统,并使用 FAT16 或 FAT32 进行格式化。 如有仪器不能识别的 U 盘,请换用其它已格式化的 U 盘。

说明:优高公司不对在本仪器上使用USB存储设备时造成的U盘数据丢失负责。

6.2 保存文件到 U 盘

将 USB 存储器 (U 盘) 连接到仪器的 USB(HOST)后,就可以使用面板上的 SAVE 复用键 或者每个页面的工具菜单中的"开始保存"功能软键,将测试结果或屏幕快照保存到 U 盘上。

将测量结果保存到 U 盘

在测量显示页、分选显示页,可以将测量结果按 CSV 格式保存到 U 盘上,保存后就可以 下载到 PC 机上打开和使用这些文件。

保存测量结果要使用数据缓冲区,仪器最多可缓存 256 个测量结果,默认使用 128 个数 据缓存,缓存区大小可以使用"MEMory:DIM"命令进行设置。

单个 CSV 或者 TXT 文件最多可以保存 65536 行测试数据,达到这个最大数据后仪器自动 停止数据记录。

说明: 有关命令系统, 请参考 "U283X 系列精密 LCR 数字电桥编程手册"。

数据记录格式:

与八 0 鱼的数据记录馆以按以下刀式组织:					
主参数	副参数	状态	档号		
<data a=""></data>	<data b=""></data>	<status></status>	<bin no.=""></bin>		

说明: <STATUS>为仪器工作状态,正常为0,其它为出错信息;

DATA 使用固定长度的 ASCII 格式:

SN.NNNNNESNN (S: +/-, N: 0~9, E:指数符号)

STATUS 输出 1~3 字节长度的 ASCII 格式:

SNN (S: +/-, N: 0~9)

0: 正常测量结果

其它:测量出错

(三)ⅠⅠ 舟的粉捉记录枚式按则下方式组织。

BIN NO. 输出 1~3 字节长度的 ASCII 格式:

SNN (S: +/-, N: 0~9)

0: 无正常比较结果

1~3: 合格档 BIN1~BIN3

```
10:不合格档 OUT
```

```
11: 辅助档 AUX
```

☞按以下过程保存测量结果:

- 步骤 1: 按 SYSTEM 菜单键,在<系统设置>的"保存类型"字段里,选择保存类型为 CSV。
- **步骤 2:** 连接 U 盘,确认仪器成功安装 U 盘后,按移动光标到工具,然后选择"开始保存"功能软键或者按 SAVE 复用快捷键。仪器在 U 盘上创建相应文件,系统状态 区显示数据记录图标,数据缓冲开始工作;
- **步骤 3:** 只有在测量显示页、分选显示页的测量结果才会写入缓存,当缓存区满后,数据 被批量写入步骤 2 创建的 U 盘文件里;
- 步骤 4: 仪器自动重复缓存-写入 U 盘的数据记录过程;
- **步骤 5:** 要停止保存,再到工具菜单中选择"停止保存"功能软键或者按 SAVE 复用快捷 键,缓存区的剩余数据被写入 U 盘后,结束数据记录。

警告:在向 U 盘写入数据过程中,禁止拔出 U 盘,否则可能造成 U 盘或 U 盘文件系统损坏。 说明:数据记录文件以 EULCR000~EULCR199 顺序编号,用户不能指定和修改存储的文件名;

数据写入 U 盘会占用一些时间,此过程中测量可能会有短时停止响应。

下列情况会以非正常方式自动结束数据记录:

- 向 U 盘写入数据失败
- 向一个文件写入的数据行超出范围

将屏幕快照保存到U盘

在任何显示页,可以按照 GIF/BMP/PNG 格式,将当前屏幕显示内容以图像方式保存到 U 盘,保存后就可以下载到 PC 机上打开和使用这些文件。

- ☞按以下过程保存屏幕快照:
- **步骤 1:**按 <u>SYSTEM</u>菜单键,在<系统设置>的"保存类型"字段里,选择保存类型为 GIF、 BMP 或 PNG 中的一种(图像格式文件);
- 步骤2:连接U盘,确认仪器已成功安装U盘;
- 步骤 3: 切换到需要截屏的页面;
- **步骤 4:** 按 SAVE 复用快捷键或将光标移到工具菜单选择"开始保存"功能软键,当前屏幕快照即以指定的图像格式文件被保存到 U 盘。

说明:屏幕快照文件以EULCR000~EULCR199 顺序编号,用户不能指定和修改存储的文件名。

6.3 文件列表(FILE LIST)

测量设置文件概要

测试设置即与测量有关的设置参数,这些参数包括:当前页面(或进入文件列表前的页面);测量设置页的所有设置;极限设置页的所有设置。

仪器将以上设置组织为一个文件,可以被整体保存和调用;同时还可以为保存的文件指 定名称(备注信息),名称随同文件保存。

媒体	存储序号	使用
内部 RAM (电池供电)	0	文件不可见,即时保存,自动调用
内部 FLASH ROM	1~50	通过文件列表存储和调用
外部 USB 存储器	51~550	通过文件列表存储和调用
		存储位置: <u>\U283x\SETUP</u> *1
		文件名: 51.EST~550.EST

测量设置文件按编号可以被保存在以下媒体中:

存储/调用测量设置

按菜单按键(MEAS,SETUP或SYSTEM),再按"文件列表"(FILE LIST)功能软键,进入文件列表页。

	〈文	件	列表〉	存储器:ROM		4.4
	序	뭉	名称		日期	加载
	1	•	ABCabc		2013-06-08 11:02	
	2	•	0000 004			保存
	3	•	2836_001		2013-06-08 11:02	<u> </u>
	4 5	•				删除
	6	:				<u>}</u>
	7					复制
	8	•				
	9	•				退出
	10	•				
l	日保	存	完成			11:03:00

文件列表页的字段信息:

字段	描述
序号(No.)	显示存储的设置文件序号,1~50为内部 ROM 存储器,51~550
	为外部 USB 存储器。
	通过光标键选择要操作的文件序号:
	上下光标键单步移动字段;左右光标键按页移动字段;
	ENTER 键存储媒体选择
名称 (NAME)	显示所存储的设置文件的备注信息,用于对测量设置参数进
	行命名,不是指存储在U盘上的文件名。
日期 (DATE)	显示保存时的系统时间。
存储器(Memory)	显示当前有效的存储媒体,用 ENTER 键切换可用媒体或 U
	盘分区。

☞用光标键移动字段,选择要操作的文件序号,按功能软键操作:

功能软键	操作功能			
加载(LOAD)	文件存在时可用,调用指定的设置文件			
	加载时有确认操作。			
保存(SAVE)	保存当前测量设置参数,保存前要求输入文件名称,可以直接确			
	认以默认的 <unnamed>命名</unnamed>			

注意: 这里要求输入的文件名称, 实际是测量设置文件的备注信息!

删除	(DELETE)	文件存在时可用,删除指定的设置文件
		删除时有确认操作。
复制	(COPY)	批量复制文件,分别输入源文件序号,目标文件序号,复制数量
		后,即可执行批量文件复制,主要用于内外存储器间文件交换。
退出	(EXIT)	退出文件列表,返回进入文件列表前的页面。

第七章 技术指标

本章主要内容:测量精度,性能测试和通用指标,有关仪器基本技术参数,请参阅第二 章"功能参数"。

7.1 测量精度

测量精度包含了测量稳定性、温度系数、线性度、测量重复性和校准内插等误差。 对仪器测量精度进行检查时必须在下述条件下进行:

- 开机预热时间: ≥ 20 分钟。
- 预热后正确地进行开路、短路修正。
- 使用延长测试电缆线时,经过电缆延长校准。
- 仪器量程工作在 "AUTO", 以选择正确的测量范围。

|Z|、|Y|、L、C、R、X、G、B 的精度

 $Ae = \pm (Ab + Zm/Zo + Zs/Zm) × Kt$ [%] Ab: 基本测量精度 Zm: 被测件阻抗 Zo: 开路阻抗基数 Zs: 短路阻抗基数 Kt: 温度因子 L, C, X, B精度使用条件: Dx (D测量值) ≤0.1 R, G精度使用条件: Qx (Q测量值) ≤0.1 当Dx≥0.1 时,对L、C、X、B, 精度因子Ae应乘以 $\sqrt{1+D_x^2}$ 当Qx≥0.1 时,对R、G, 精度因子Ae应乘以 $\sqrt{1+Q_x^2}$

D 的精度

D的精度De由下式给定:

当
$$Dx \leq 0.1$$
时
 $De = \pm \frac{Ae}{100}$

当Dx > 0.1 时,用 (1+Dx) 乘以De

Dx 被测件的D值

Q的精度

Q的精度由下式给定:

$$Qe = \pm \frac{Q_x \times D_e}{1 \mu Q_x \times D_e}$$

这里,Qx是被测件的Q值。 De是D的相对精度 上式使用条件 Qx×De < 1

θ的精度

θ的精度由下式给定:

$$\Theta = \frac{180}{\pi} \times \frac{A_e}{100} \qquad [deg]$$

Ae 是|Z|、|Y|、L、C、R、X、G 和 B 的相对精度

G 的精度

G 的精度由下式给定: Ge = Bx × De [S] Bx = $2\pi fCx = \frac{1}{2\pi fLx}$ Dx 被测件的 D 值 Bx 被测件的 B 值 [S] De D 的相对精度 f 测试频率 [Hz] Cx 被测件的 C 值 [F]

Lx 被测件的L值 [H]

Rp 的精度

当Dx (被测件D值) \leq 0.1 时 Rp的精度由下式给定: $Rp = \pm \frac{R_{\mu x} \times D_e}{D_x \mu D_e}$ [Ω] Rpx 被测件的Rp值 [Ω]。 Dx 被测件的D值。 De D的相对精度。

Rs 的精度

当Dx(被测件D值) ≤ 0.1 时 Rs的精度由下式给定: Rse = Xx×De [Ω]

$$X_{\rm X} = 2 \pi f L_{\rm X} = \frac{1}{2 \pi f C_{\rm X}}$$

Xx 被测件的X值 [Ω]。

- Cx 被测件的C值 [F]。
- Lx 被测的L值 [H]。
- De D的相对精度
- f 测试频率 [Hz]

基本精度 Ab

基本精度表 (慢速,中速):

	$5 \text{mV} \sim 50 \text{mV}$	50mV~0.2V	0.2V~0.6V	0.6V~2V
20Hz~125Hz	0.3%×(50mV/Vs)	0.15%	0.1%	0.08%
125Hz~110kHz	0.15%×(50mV/Vs)	0.1%	0.08%	0.05%
110kHz~200kHz	$0.25\% \times (50 \text{mV/Vs})$	0.2%	0.15%	0.1%

基本精度表 (快速):

	5mV~50mV	50mV~0.2V	0.2V~0.6V	0.6V~2V
20Hz~125Hz	$0.6\%\times(50\text{mV/Vs})$	0.4%	0.25%	0.2%
125Hz~110kHz	$0.3\% \times (50 \text{mV/Vs})$	0.2%	0.15%	0.1%
110kHz~200kHz	$0.5\% \times (50 \text{mV/Vs})$	0.3%	0.2%	0.15%

基本精度修正-低阻抗时

当阻抗小于 30Ω时,基本精度加上以下值:

柄玄范围	被测阻抗		
》火华·记田	Zx ≤1.1 Ω	$1.1 \Omega < Zx < 11 \Omega$	$11 \Omega < Zx < 30 \Omega$
20Hz ~ 110kHz	0.08%	0.05%	0.03%
110kHz ~ 200kHz	0.15%	0.08%	0.05%

基本精度修正-高阻抗时

当阻抗大于 9.6kΩ时,基本精度加上以下值:

场家范围	被测阻抗		
<u></u> 频平范围	Zx >96k Ω	$30k \Omega < Zx < 96k \Omega$	$9.6k \Omega < Zx < 30k \Omega$
20Hz ~ 22kHz	0.05%	0.03%	0
22kHz ~ 110kHz	$0.1\%^{*1}$	0.05%	0.03%
110kHz ~ 200kHz	$0.2\%^{*2}$	$0.1\%^{*3}$	0.05%

注*1,*2,*3:已处于扩展测量范围内,参阅第三章"量程范围"。

基本精度修正-电缆延长

当使用延伸测试电缆时,基本精度再加上以下值:

 $0.02 \times (Fm/100 \text{ kHz})^2 \times L^2$ [%]

- Fm 测试频率 [Hz]
- L 测度电缆长度 [m]

注: 未经过相应电缆长度校准时, 不在精度评估范围

基本精度修正-内插频率

当使用非典型频率时,基本精度再加上: 0.03%

开路阻抗基数 Zo

● 开路阻抗基数反应的是高阻抗延伸测量能力。

垢玄范国	测量速度		
	快速	中速和慢速	
20Hz~125Hz	$2M\Omega$	$5 M\Omega$	
125Hz~22kHz	$5M\Omega$	8MΩ	
22kHz~110kHz	$1 M\Omega$	1.6MΩ	
110kHz~200kHz	300 k Ω	$500 \mathrm{k} \Omega$	

● 测试电压电平Vs<1时,开路阻抗基数Zo乘以Vs

● 电缆长度延伸后,开路阻抗基数Zo乘以下表因数:

斯文拉田	电缆长度				
<u> </u>	Om	1m	2m	4m	
20Hz~22kHz	1	1	0.8	0.5	
22kHz~110kHz	1	0.8	0.5	0.2	
110kHz~200kHz	1	0.5	0.25	0.1	

短路阻抗基数 Zs

● 开路阻抗基数反应的是低阻抗延伸测量能力。

垢亥茄用	测量速度		
<i>妙</i> 平把围	快速	中速和慢速	
20Hz~55Hz	10 Ω	3Ω	
55Hz~125Hz	3Ω	1Ω	
125Hz~1.1kHz	1.8Ω	$660 \mathrm{m} \Omega$	
1.1kHz~11kHz	1 m Ω	330mΩ	
11kHz~200kHz	330 m Ω	110 m Ω	

● 测试电压电平Vs<1时,短路阻抗基数Zs除以Vs

● 电缆长度延伸后,短路阻抗基数Zs乘以下表因数:

垢玄范围	电缆长度				
<u> </u>	Om	1 m	2m	4m	
20Hz~22kHz	1	1	1.2	2	
22kHz~110kHz	1	1.2	1.5	3	
110kHz~200kHz	1	2	5	10	

温度系数 Kt

反应环境温度对测量精度的影响:

环境温度 [℃]	Kt
0~8	4
8~18	2
18~28	1
28~38	2
38~48	4

7.2 性能测试

各项测试应在精度评估所述工作条件下进行。本测试只列入仪器主要部分指标的测试, 其它部分未列入的参数,用户可根据本手册所列指标在规定条件下进行测试。若发现测试结 果超出指标范围,请送至专门的维修部门或本公司维修。

性能测试所用器件及设备

序号	仪器设备名称		技术要求
		100pF	
		1000pF	0.000/
1	标准电容器	10nF	0.02% 提起力司知
		0. 1uF	坝札U島加
		1uF	
		10 Ω	
		100 Ω	
2	文派 長海由阳嬰	$1k\Omega$	0.02%
	你准电阻益	10 k Ω	
		100k Ω	
		100 µ H	
2	与 冲中 电 盟	1mH	0.020/
3	10mH	0.02%	
		100mH	
4	频率计		(0~1000) MHz
5	数字万用表		0.5%

功能检查

仪器各功能键、显示器、端子等应能正常工作,各项功能正确无误:

- 开机后可以使用系统测试功能进行基本测试
- 连接端面夹具,使用电阻或电容测量功能对电阻电容进行测量,测量结果无异常
- 使用开路清零修正,用 Cp 或 G-B 参数查看开路状况,其显示底数无明显异常
- 使用短路清零修正,用Z、Ls或R-X参数查看短路状况,其显示底数无明显异常
- 使用不同的测试频率、电平重复查验并进行 DUT 实测

测试信号电平精度测试

测试信号电平精度为: 10%±5mVrms

将数字万用表置于 AC 电压量程,其中一根测试棒连接到测量仪的 Hc 端,另一根测试棒 连接到接地端。改变电平为: 0.1V, 0.3V, 1V, 2V,查验测试电平。

频率精度测试

测试信号频率精度为 0.01%

将频率计接地端与仪器的接地端相连,频率计测试端与仪器测试端 Hc 端相连。改变频率为: 50Hz、100Hz、1kHz、10kHz、100kHz 查验主要测试频率。

电容量 C、损耗 D 精度测试

功能	Cp-D					
测试频率	100Hz	1kHz	10kHz	100kHz	分别	则试
电平	1V					
量程	AUTO					
偏置	无					
速度	慢					
前应进行되	败和开败	洁雯	注 λ标准	由)OnF	1000r

测试前应进行短路和开路清零。 接入标准电容器 100pF、1000pF、10nF、0.1uF、1uF, 改变频率, 仪器读数与标准值之间的误差电容量 C 及损耗 D 应在规定的允许误差范围内。

电感量 L 精度测试

Ls-Q				
100Hz	1kHz	10kHz	100kHz	分别测试
1V				
AUTO				
无				
慢				
	Ls-Q 100Hz 1V AUTO 无 慢	Ls-Q 100Hz 1kHz 1V AUTO 无 慢	Ls-Q 100Hz 1kHz 10kHz 1V AUTO 无 慢	Ls-Q 100Hz 1kHz 10kHz 100kHz 1V AUTO 无 慢

测试前应进行短路和开路清零。 接入标准电感器 100 µ H、1mH、10mH、100mH,改变频率, 仪器读数与标准值之间的误差应在规定的允许误差范围内。

阻抗 Z 精度测试

功能	Z- θ				
测试频率	100Hz	1kHz	10kHz	100kHz	分别测试
电平	1V				
量程	AUTO				
偏置	OV				
速度	慢				

测试前应进行短路和开路清零。接入交流标准电阻器 10Ω、100Ω、1kΩ、10kΩ、100kΩ, 改变频率,仪器读数与标准值之间的误差应规定的允许误差范围内。

7.3 通用指标

供电要求

	要求
电压	100Vac~240Vac
频率	47.5~63Hz
最大功耗	30VA

工作环境

温度	0°C至55°C
湿度(≤40°C,无冷凝)	15%至 85% RH
高度	0 m 至 2000 m

储存环境

温度	-20°C至70°C
湿度(≤60°C,无冷凝)	0%至 90% RH
高度	0 m 至 4500 m

体积与重量

宽×高×深: 280*88*350 (mm) 重量:约 3.5kg

安全规格

本仪器为I类安全仪器

- (1) 绝缘电阻
 在参比工作条件下,电源端子与外壳之间的绝缘电阻不小于 50MΩ;
 在湿热运输条件下,电源端子与外壳之间的绝缘电阻不小于 2MΩ;
- (2) 绝缘强度

在参比工作条件下,电源端子与外壳之间能承受额定电压为 1.5kV,频率为 50Hz的 交流电压 1 分钟,无击穿及飞弧现象。

(3) 泄漏电流泄漏电流不大于 3.5mA。

电磁兼容性

- (1) 电源瞬态敏感度按 GB6833.4 的要求。
- (2) 传导敏感度按 GB6833.6 的要求。
- (3) 辐射干扰按 GB6833.10 的要求。

附录 A 远程控制

本章主要内容: 仪器可使用 RS232C 串行接口、USB-CDC 或 USB-TMC 进行数据通讯和无仪 器面板的远程控制,但不能同时使用;它们共享仪器标准的 SCPI 指令集,但使用不同的硬件 配置和通讯协议。本章介绍接口的使用方法,接口命令的使用详见"U283X 精密 LCR 数字电桥 编程手册"。

A.1 RS232C 远程控制系统

仪器标准配置的 RS232C 接口可用于与计算机及 PLC 通讯,为数据采集及统计分析提供了 最为廉价方便的条件。仪器提供了丰富的程控命令,通过 RS232C 接口,计算机可实行仪器面 板上几乎所有功能操作。

RS232C 总线

RS-232C 虽然可以被 USB 通讯方案完全替代,但一些工业应用及 PLC 控制仍在采用,并 且有十分广泛的应用基础。标准 RS-232C 接口使用 25 芯连接器(基本淘汰)和 9 芯连接器。 同世界上大多数串行口一样,本仪器的串行接口不是严格基于 RS-232 标准的,而是只提

供一个最小的子集。如下表:

信号	符号	连接器引脚号
发送数据	TXD	3
接收数据	RXD	2
接地	GND	5

RS232C 配置

本仪器采用标准9芯针式 DB 连接器, 右图为连接电缆:

使用 RS232C 口串行通讯电缆连接到上位机,最基本的连接方案如下:

RS232C 参数

传输方式	含起始位和停止位的全双工异步通讯
波特率	1200bps, 9600bps, 19200bps, 38400bps, 115200bps
数据位	8 BIT
停止位	1 BIT
校验	无
结束符	CR、LF、CR+LF 可选
联络方式	软件联络
连接器	DB9 芯

A.2 USB 远程控制系统

USB 通讯是目前应用最广泛的串行通讯方式之一。

USB 通讯总线

USB(通用串行总线)远程控制系统通过 USB 来控制设备,通过符合 USBTMC-USB488 和 USB 2.0 标准的接口完成。仪器的 USB 接口支持两种模式: USB-CDC 和 USB-TMC。

USB-CDC 模式(通讯设备类)将仪器虚拟为 COM 端口(Vcom),可以实现如同 RS232C 一样的方式建立通讯。

USB-TMC 模式(测试与测量类)协议的设计是基于 USB 以实现类似于 GPIB 的方式与 USB 设备建立通信。

USB 配置

仪器的 USB-DEVICE 采用 USB-B 型(方口)连接器, USB 通讯线为 USB A-B 型:

将仪器通过 USB 连接到 PC 后,按照使用的 USB 通讯模式,需要在 PC 上安装不同的驱动 程序后才能使用。**USB-CDC**

选择通讯类型为 USB-CDC 模式后,按以下过程安装驱动程序:

- 首次连接后,计算机发现新硬件,并弹出安装新硬件对话框,选择"否,暂时不":
- 单击"下一步",选择"从列表或指定位置安装":
- 然后再单击"下一步",选择包含 EUCOL Vcom 和 usbser.sys 驱动安装信息文件的路 径,然后单击"下一步"即可成功安装 USB CDC 驱动;
- 安装完成后即可以在电脑的设备管理器中查看 USB CDC 设备及其端口号:

U283x 系列 LCR 使用说明书

附录 A 远程控制

说明: 仪器的 USB-CDC 驱动程序, 可从优高公司网站 www.eucol.com.cn 下载

安装成功后,就可以如同使用 RS232C 一样的方式访问和控制仪器,而不需要每次都重复 安装,但计算机可能会动态分配串口号,请到设备管理器里查看!

USB-TMC

要使用 USB-TMC 模式,请先到 NI 的网站(http://www.ni.com/china)下载并安装 NI-VISA, 该软件包含了 USB TMC 驱动程序。

首次通过 USB 电缆连接仪器到计算机后,计算机发现新硬件,弹出安装新硬件对话框:选择"否,暂时不",点击下一步,如果已安装过 NI-VISA,向导会搜索到并显示"USB Test and Measurement Device" 驱动:

选择"自动安装软件",点击下一步,计算机自动完成"USB Test and Measurement Device" 驱动的安装。完成后可以从设备管理器可以查看到安装的设备:

A.3 数据格式

仪器向总线输出测量结果时,以ASCII字串的格式传送。 在测量显示、分选显示和通过测试页,输出数据格式为:

上图中,","号为数据间的分隔符,NL为行结束符(0x0A),表示字串结束;^END为 IEEE-488 总线的 EOI(结束)信号,本仪器从 GPIB 上发送的信息都是在发送行结束符的同时 驱动 EOI信号。RS232C、USB-CDC、USB-TMC 时没有这个信号,只有行结束符。

<DATA A>, <DATA B>, <STATUS>, <BIN No.>的格式分述如下:

● <DATA A>及<DATA B>输出测量结果:

<DATA A>为主参数测量结果, <DATA B>为副参数测量结果, 以指数格式表示, 用 12 位 ASCII 字符组成, 即:

SN.NNNNNESNN(S: +/-, N: 0到9, E: 指数符号)

● <STATUS>表示测量状态,正常返回为0,其它为错误

● <BIN No.>输出分选比较结果,输出结果如下:

数值	分选结果
0	无比较
1~3	档号 BIN1~3
10	不合格档 OUT
11	辅助档 AUX
其它	非法输出

非有效测量页如发生数据查询,输出无效结果: +9.90000E+37,+9.90000E+37,-1,0

附录 B HANDLER 接口(36 芯)

本章主要内容: 36 芯 HANDLER 处理机接口的信号定义

B.1 基本信息

本仪器向用户提供了功能强大的 HANDLER 接口(处理机接口),该接口主要用于仪器分选结果的输出,以及与系统的信号同步。

同步信号包括 TRIG (测试启动)、IDX (AD 转换结束)、EOM (测量结束) 三种信号; 输出分选信号包含: 合格档 (BIN1-3),附属档 (AUX)和不合格档 (OUT)。不合格时 还有一次参数偏高 (PHI)、一次参数偏低 (PLO)和二次参数不合格 (SREJ)信号输出。

使用这些信号, 仪器可以方便的和系统控制器组成自动测试系统, 进行元器件的测试、 分选和质量控制, 从而提高生产效率。

技术参数

控制输出信号

光电隔离,开集电极(OC)输出,低电平有效; 上拉电源可选择内部 VCC 或外部 EXV2 /IDX: A/D 转换结束(模拟测量结束) /EOM:全部测量完成,HANDLER 输出信号有效。

输入信号

/TRIG:外部触发,脉宽≥10μs,上升或下降沿触发(默认上升沿) 光电隔离,低电平驱动,电流 5~10mA

说明:信号名称前的斜杠"/"表示该信号在低电平时有效。

B.2 信号线定义

HANDLER 信号在个同功能卜定义有区别						
管脚号	容限模式	备注				
1	/BIN1	分选输出				
2	/BIN2	分选输出				
3	/BIN3	分选输出				
4-9	NC	空脚				
10	/OUT	分选输出				
11	/AUX	分选输出				
12-13	/TRIG	输入信号,外部触发				
14-15	EXV2	控制输出信号的上拉电源				
16-18	VCC	内部+5V 电源				
19	/PHI	分选输出				
20	/PLO	分选输出				
21	/SREJ	分选输出				
22-26	NC	空脚				
27-28	EXV1	分选输出信号的上拉电源				
29	NC	空脚				
30	/IDX	控制输出				
31	/EOM	控制输出				
32-33	COM2	EXV2 的公共地				

信号左不同功能下空义方区则

HANDLER 接口引脚图

34-36

COM1

EXV1 的公共地

B.3 时序图

时序图用来表示仪器测量的时间过程及其输入输出信号之间相互关系。 HANDLER 接口使用以下信号来表示测量过程和进行时序同步:

触发信号/TRIG

模拟测量结束信号/IDX(IDX 有效之后,表示被测件可以离开测试端) 完整测量结束/EOM(包括模拟测量之后的数据处理,显示,比较等) 比较结果输出信号

注:f 为信号源频率,T 为信号源周期。

B.4 电气特征

连接 HANDLER 口到外部控制器时,请参考本节关于 HANDLER 接口电气特征的介绍。 使用 HANDLER 接口板,将涉及到上拉电阻、内部电源和外部电源的使用。 由于开集电极不能输出高电平,必须将输出经过上拉电阻连接到逻辑电源。 仪器的 HANDLER 接口板上预留有上拉电阻,这些电阻默认为不安装。如要使用内部上

注意: 仪器默认配置为使用外部电源和外部上拉,电压 5~24V,连接到典型的 PLC 控制器 上时,无需对接口板进行任何配置更改就可使用。

参考下图上拉电阻的位置和跳线的位置:

跳线 1 和 2: 选择分选输出信号的电源:内部为 VCC,外部为 EXV1 跳线 3 和 4: 选择控制输入输出信号的电源:内部为 VCC,外部为 EXV2 进一步了解跳线,参阅下文电气图

直流隔离输出

每个直流输出信号都是光电耦合器隔离的集电极输出。每根信号线上的输出电压由 HANDLER 接口板上的上拉电压设定。上拉电压可以通过设置跳线由内部电源(+5V)提供, 或由外部电压(EXV: +5~+24V)提供。

直流隔离输出分为比较结果输出信号和控制输出信号两个类型,参见下表:

输出信号	输出额	定电压	县十由冻	由败会老师	
(以容限模式为例)	低电平	高电平	取入电机	电始参传地	
分选输出				内部上拉电源:	
/BIN1-3				仪器参考地(GND)	
/OUT		+5V~			
/AUX	≪0.5V	+24V	6mA	外部电源 (EXV1):	
/PHI		1241		COM1	
/PLO					
/SREJ					

附录 B 36 芯 HANDLER 接口

控制输出 /IDX /EOM	≪0. 5V	+5V~ +24V	6mA	内部上拉电源: 仪器参考地(GND) 外部电源(EXV2): COM2
----------------------	--------	--------------	-----	--

分选输出信号电气示意图:

控制输出信号电气示意图:

直流隔离输入

直流隔离输入也是光电耦合,通过驱动光电耦合器实现信号输入。 输入信号有:

外部触发/TRIG 信号(包括外部 BNC 触发输入端子的信号) 输入信号电气示意图:

输入信号连接到光耦中 LED 的阴极,需要提供至少 5mA 的拉电流;光电耦合的 LED 阳 极连接内部 5V 或外部 EXV2 电源,电源范围为+5~+24V。仪器自带+24V 电源范围内的限流 工作电路,因此连接时不需外接任何限流电阻。

附录C9芯HANDLER接口

本章主要内容:9芯 HANDLER 处理机接口的信号定义

C.1 基本信息

本仪器向用户提供了9芯的 HANDLER 接口(处理机接口),该接口主要用于仪器分选结果的输出,以及与系统的信号同步。

同步信号包括 TRIG (测试启动)、EOM (测量结束)两种信号;

分选信号输出有: 合格档 (BINn), 不合格档 (NG)。

使用这些信号, 仪器可以方便的和系统控制器组成自动测试系统, 进行元器件的测试、 分选和质量控制, 从而提高生产效率。

技术参数

<u>分选输出信号</u>

比较结果输出信号: 光电隔离,开集电极(OC)输出,低电平有效; 上拉电源可选择内部 VCC 或外部 EXV /BINn: 合格输出 /NG: 不合格输出

控制输出信号

光电隔离,开集电极(OC)输出,低电平有效; 上拉电源可选择内部 VCC 或外部 EXV /EOM:全部测量完成,HANDLER 输出信号有效。

控制输入信号

/TRIG:外部触发,脉宽≥10µs,上升沿触发(可定制); 光电隔离,低电平驱动,电流 5~10mA

说明:信号名称前的斜杠"/"表示该信号在低电平时有效。

C.2 信号线定义

管脚号	管脚名称	备注
1	/BIN1	分选输出合格档1
2	/BIN2	分选输出合格档2
3	/BIN3	分选输出合格档3
4	/NG(OUT)	不合格输出
5	/EOM	测量结束信号
6	EXTV	外部上拉电源/控制输入电源
7	NC	未定义
8	/TRIG	测试启动信号(触发信号)
9	СОМ	公共端 (外部电源地)

U283x的HANDLER口使用DB9孔连接器,脚位信号定义如下表:

HANDLER 接口的 DB9 芯连接器的脚位分布示意图:

Ę	5		4		3	4	2	1	
EC	DM	NG,	/OUT	BI	N3	BI	N2	BIN	11
	Ç)	8		7			6	
	CO	M	TRIG		Ν	С	E	XTV	

C.3 电气特征

连接 HANDLER 口到外部控制器时,请参考本节关于 HANDLER 接口电气特征的介绍。

HANDLER 接口板

使用 HANDLER 接口板,将涉及到上接电阻、内部电源和外部电源的使用。

注意: U283x 默认配置为使用外部电源和外部上拉,电压 5~24V,连接到典型的 PLC 控制器 上时,无需对接口板进行任何配置更改就可使用。

由于开集电极不能输出高电平,必须将输出经过上拉电阻连接到逻辑电源。 U283x 的 HANDLER 接口板上预留有上拉电阻,这些电阻默认为不安装。如要使用内部 上拉,还需要使用上拉电源和共地连接,这就要更改 HANDLER 接口板的设置。 参考下图上拉电阻的位置和跳线的位置:

~ - - -

J1, J2: 跳线至上面位置为默认使用外部电源

直流隔离输出

每个直流输出信号都是光电耦合器隔离的集电极输出。每根信号线上的输出电压由 HANDLER 接口板上的上拉电压设定。上拉电压可以通过设置跳线由内部电源(+5V)提供, 或由外部电压(EXV: +5~+24V)提供。

且 流隔 离输出分为比较结果输出信号和控制输出信号两个类型,	参见卜表:	

检山信早	输出额定电压		县十由冻	由败矣老州	
	低电平	高电平	取八电弧	电哈参传地	
分选输出				内部上拉电源:	
/BIN1-3				仪器参考地(GND)	
/NG(OUT)	≪0.5V	+5V~ +24V	6mA	外部电源(EXV): COM	
控制输出				内部上拉电源:	
/EOM	≤0.5V	5V +5V~ +24V	бmА	仪器参考地(GND)	
				外部电源(EXV):	
				COM	

分选输出信号电气示意图:

直流隔离输入

直流隔离输入也是光电耦合,通过驱动光电耦合器实现信号输入。 输入信号有:

外部触发/TRIG 信号(包括外部 BNC 触发输入端子的信号) 输入信号电气示意图:

输入信号连接到光耦中 LED 的阴极,需要提供至少 5mA 的拉电流;光电耦合的 LED 阳 极连接内部 5V 或外部 EXV 电源,电源范围为+5~+24V。U2836 内部部使用固定 1.2kΩ 限流 电阻,允许在高于 12V 的外部电源工作时,在输入信号上串入电阻以减小触发电流。

C.3 时序参考

触发启动与测量

触发启动信号上升沿有效,可配置为下降沿有效 推荐有效脉宽: >10us

地址:常州市天宁区青洋北路 1 号新动力创业中心 23 幢 B2 电话:+86-519-85505199 传真:+86-519-85505169 官网:www.eucol.com.cn 邮箱:sales@eucol.com.cn